
Introduction

This document provides usage information and application hints related to ST’s ISM330IS iNEMO inertial module with intelligent
sensor processing unit (ISPU).
The ISM330IS is a 3-axis digital accelerometer and 3-axis digital gyroscope system-in-package with a digital I²C/SPI serial
interface standard output, performing at 0.59 mA in combo high-performance mode (gyroscope + accelerometer only, ISPU
not included). Thanks to the ultralow noise performance of both the gyroscope and the accelerometer, the device combines
always-on low-power features with superior sensing precision for an optimal motion experience for the consumer.
The device has a dynamic user-selectable full-scale acceleration range of ±2/±4/±8/±16 g and an angular rate range of
±125/±250/±500/±1000/±2000 dps.
The availability of a dedicated connection mode with up to 4 external sensors allows the implementation of the sensor hub
functionality.
The ISM330IS embeds a new ST category of processing, ISPU - intelligent sensor processing unit, to support real-time
applications that rely on sensor data. The ISPU is an ultralow-power, high-performance programmable core based on the
STRED architecture, a proprietary architecture developed by STMicroelectronics. The ISPU toolchain allows developing in C
code and loading any custom program in the core, ranging from signal processing algorithms to machine learning and deep
learning models.
The ISM330IS is available in a small plastic land grid array package (LGA-14L) and it is guaranteed to operate over an
extended temperature range from -40 °C to +85 °C.
The ultrasmall size and weight of the SMD package make it an ideal choice for industrial applications such as robotics, anomaly
detection, and asset tracking.

ISM330IS: always-on 3-axis accelerometer and 3-axis gyroscope with ISPU -
intelligent sensor processing unit

AN5850

Application note

AN5850 - Rev 1 - August 2022
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/ism330is?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5850

1 Pin description

Figure 1. Pin connections

ΩΩ Y

ΩΩ R

ΩΩ P

Z

Y

X

MSDA
MSCL

1

4

11

8

7 5

12 14

SDO/SA0
BOTTOM

VIEW
INT1

Vd
d_

IO
G

N
D

G
N

D

Vdd
INT2
RES
RES

C
S

SC
L

SD
A

Direction of detectable
acceleration (top view)

Direction of detectable
angular rate (top view)

AN5850
Pin description

AN5850 - Rev 1 page 2/65

Table 1. Internal pin status

Pin # Name Mode 1 function Mode 2 function Pin status - mode 1 Pin status - mode 2

1
SDO SPI 4-wire interface serial

data output (SDO)
SPI 4-wire interface serial
data output (SDO)

Default: input without pull-up

Pull-up is enabled if bit
SDO_PU_EN = 1 in PIN_CTRL
(02h).

Default: input without pull-up

Pull-up is enabled if bit
SDO_PU_EN = 1 in PIN_CTRL
(02h).SA0 I²C least significant bit of

the device address (SA0)
I²C least significant bit of
the device address (SA0)

2 MSDA Connect to Vdd_IO or
GND

I²C serial data master
(MSDA)

Default: input without pull-up

Pull-up is enabled if bit
SHUB_PU_EN = 1 in
MASTER_CONFIG (14h) in the
sensor hub registers (see Note
to enable pull-up).

Default: input without pull-up

Pull-up is enabled if bit
SHUB_PU_EN = 1 in
MASTER_CONFIG (14h) in the
sensor hub registers (see Note
to enable pull-up).

3 MSCL Connect to Vdd_IO or
GND

I²C serial clock master
(MSCL)

Default: input without pull-up

Pull-up is enabled if bit
SHUB_PU_EN = 1 in
MASTER_CONFIG (14h) in the
sensor hub registers (see Note
to enable pull-up).

Default: input without pull-up

Pull-up is enabled if bit
SHUB_PU_EN = 1 in
MASTER_CONFIG (14h) in the
sensor hub registers (see Note
to enable pull-up).

4 INT1 Programmable interrupt 1 Programmable interrupt 1 Default: input with pull-down(1) Default: input with pull-down(1)

5 Vdd_IO Power supply for I/O pins Power supply for I/O pins

6 GND 0 V supply 0 V supply

7 GND 0 V supply 0 V supply

8 Vdd Power supply Power supply

9 INT2 Programmable interrupt 2
(INT2)

Programmable interrupt
2 (INT2) / I²C master
external synchronization
signal (MDRDY)

Default: output forced to ground Default: output forced to ground

10 RES Leave unconnected Leave unconnected

11 RES Connect to Vdd_IO or
leave unconnected

Connect to Vdd_IO or leave
unconnected

12 CS

I²C / SPI mode selection

(1: SPI idle mode / I²C
communication enabled;

0: SPI communication
mode / I²C disabled)

I²C / SPI mode selection

(1: SPI idle mode / I²C
communication enabled;

0: SPI communication
mode / I²C disabled)

Default: input with pull-up Default: input with pull-up

13 SCL I²C serial clock (SCL) /
SPI serial port clock (SPC)

I²C serial clock (SCL) / SPI
serial port clock (SPC) Default: input without pull-up Default: input without pull-up

14 SDA

I²C serial data (SDA) / SPI
serial data input (SDI) / 3-
wire interface serial data
output (SDO)

I²C serial data (SDA) / SPI
serial data input (SDI) / 3-
wire interface serial data
output (SDO)

Default: input without pull-up Default: input without pull-up

1. INT1 must be set to 0 or left unconnected during power-on.

Internal pull-up value is from 30 kΩ to 50 kΩ, depending on Vdd_IO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:
1. From the primary I²C/SPI interface: write 40h in register at address 01h (enable access to the sensor hub
registers)
2. From the primary I²C/SPI interface: write 08h in register at address 14h (enable the pull-up on pins 2 and 3)
3. From the primary I²C/SPI interface: write 00h in register at address 01h (disable access to the sensor hub
registers)

AN5850
Pin description

AN5850 - Rev 1 page 3/65

2 Registers

Table 2. Registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FUNC_CFG_ACCESS 01h ISPU_REG
_ACCESS

SHUB_REG
_ACCESS 0 0 0 0 SW_RESET

_ISPU 0

PIN_CTRL 02h 0 SDO_PU_EN 1 1 1 1 1 1

DRDY_PULSED_REG 0Bh DRDY_PULSED 0 0 0 0 0 0 0

INT1_CTRL 0Dh 0 0 0 0 0 INT1_BOOT INT1_DRDY_G INT1_DRDY_XL

INT2_CTRL 0Eh INT2_SLEEP
_ISPU 0 0 0 0 INT2_DRDY_TEMP INT2_DRDY_G INT2_DRDY_XL

WHO_AM_I 0Fh 0 0 1 0 0 0 1 0

CTRL1_XL 10h ODR_XL3 ODR_XL2 ODR_XL1 ODR_XL0 FS1_XL FS0_XL 0 0

CTRL2_G 11h ODR_G3 ODR_G2 ODR_G1 ODR_G0 FS1_G FS0_G FS_125 0

CTRL3_C 12h BOOT BDU H_LACTIVE PP_OD SIM IF_INC 0 SW_RESET

CTRL4_C 13h 0 SLEEP_G INT2_on_INT1 0 0 I2C_disable 0 0

CTRL5_C 14h 0 0 0 0 ST1_G ST0_G ST1_XL ST0_XL

CTRL6_C 15h 0 0 0 XL_HM_MODE 0 0 0 0

CTRL7_G 16h G_HM_MODE 0 0 0 0 0 0 0

CTRL9_C 18h ISPU_RATE_3 ISPU_RATE_2 ISPU_RATE_1 ISPU_RATE_0 0 0 ISPU_BDU_1 ISPU_BDU_0

CTRL10_C 19h 0 0 TIMESTAMP_EN 0 0 ISPU_CLK_SEL 0 0

ISPU_INT_STATUS0_MAINPAGE 1Ah IA_ISPU_7 IA_ISPU_6 IA_ISPU_5 IA_ISPU_4 IA_ISPU_3 IA_ISPU_2 IA_ISPU_1 IA_ISPU_0

ISPU_INT_STATUS1_MAINPAGE 1Bh IA_ISPU_15 IA_ISPU_14 IA_ISPU_13 IA_ISPU_12 IA_ISPU_11 IA_ISPU_10 IA_ISPU_9 IA_ISPU_8

ISPU_INT_STATUS2_MAINPAGE 1Ch IA_ISPU_23 IA_ISPU_22 IA_ISPU_21 IA_ISPU_20 IA_ISPU_19 IA_ISPU_18 IA_ISPU_17 IA_ISPU_16

ISPU_INT_STATUS3_MAINPAGE 1Dh 0 0 IA_ISPU_29 IA_ISPU_28 IA_ISPU_27 IA_ISPU_26 IA_ISPU_25 IA_ISPU_24

STATUS_REG 1Eh TIMESTAMP_
ENDCOUNT 0 0 0 0 TDA GDA XLDA

OUT_TEMP_L 20h Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0

OUT_TEMP_H 21h Temp15 Temp14 Temp13 Temp12 Temp11 Temp10 Temp9 Temp8

OUTX_L_G 22h D7 D6 D5 D4 D3 D2 D1 D0

OUTX_H_G 23h D15 D14 D13 D12 D11 D10 D9 D8

OUTY_L_G 24h D7 D6 D5 D4 D3 D2 D1 D0

OUTY_H_G 25h D15 D14 D13 D12 D11 D10 D9 D8

OUTZ_L_G 26h D7 D6 D5 D4 D3 D2 D1 D0

OUTZ_H_G 27h D15 D14 D13 D12 D11 D10 D9 D8

OUTX_L_A 28h D7 D6 D5 D4 D3 D2 D1 D0

OUTX_H_A 29h D15 D14 D13 D12 D11 D10 D9 D8

A
N

5850 - R
ev 1

page 4/65

A
N

5850
R

egisters

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

OUTY_L_A 2Ah D7 D6 D5 D4 D3 D2 D1 D0

OUTY_H_A 2Bh D15 D14 D13 D12 D11 D10 D9 D8

OUTZ_L_A 2Ch D7 D6 D5 D4 D3 D2 D1 D0

OUTZ_H_A 2Dh D15 D14 D13 D12 D11 D10 D9 D8

STATUS_MASTER_ MAINPAGE 39h WR_ONCE_DONE SLAVE3_NACK SLAVE2_NACK SLAVE1_NACK SLAVE0_NACK 0 0 SENS_HUB
_ENDOP

TIMESTAMP0 40h D7 D6 D5 D4 D3 D2 D1 D0

TIMESTAMP1 41h D15 D14 D13 D12 D11 D10 D9 D8

TIMESTAMP2 42h D23 D22 D21 D20 D19 D18 D17 D16

TIMESTAMP3 43h D31 D30 D29 D28 D27 D26 D25 D24

MD1_CFG 5Eh 0 0 0 0 0 0 INT1_ISPU INT1_SHUB

MD2_CFG 5Fh 0 0 0 0 0 0 INT2_ISPU INT2_TIMESTAMP

INTERNAL_FREQ_FINE 63h FREQ_FINE7 FREQ_FINE6 FREQ_FINE5 FREQ_FINE4 FREQ_FINE3 FREQ_FINE2 FREQ_FINE1 FREQ_FINE0

ISPU_DUMMY_CFG_1_L 73h ISPU_DUMMY
_CFG_1_7

ISPU_DUMMY
_CFG_1_6

ISPU_DUMMY
_CFG_1_5

ISPU_DUMMY
_CFG_1_4

ISPU_DUMMY
_CFG_1_3

ISPU_DUMMY
_CFG_1_2

ISPU_DUMMY
_CFG_1_1

ISPU_DUMMY
_CFG_1_0

ISPU_DUMMY_CFG_1_H 74h ISPU_DUMMY
_CFG_1_15

ISPU_DUMMY
_CFG_1_14

ISPU_DUMMY
_CFG_1_13

ISPU_DUMMY
_CFG_1_12

ISPU_DUMMY
_CFG_1_11

ISPU_DUMMY
_CFG_1_10

ISPU_DUMMY
_CFG_1_9

ISPU_DUMMY
_CFG_1_8

ISPU_DUMMY_CFG_2_L 75h ISPU_DUMMY
_CFG_2_7

ISPU_DUMMY
_CFG_2_6

ISPU_DUMMY
_CFG_2_5

ISPU_DUMMY
_CFG_2_4

ISPU_DUMMY
_CFG_2_3

ISPU_DUMMY
_CFG_2_2

ISPU_DUMMY
_CFG_2_1

ISPU_DUMMY
_CFG_2_0

ISPU_DUMMY_CFG_2_H 76h ISPU_DUMMY
_CFG_2_15

ISPU_DUMMY
_CFG_2_14

ISPU_DUMMY
_CFG_2_13

ISPU_DUMMY
_CFG_2_12

ISPU_DUMMY
_CFG_2_11

ISPU_DUMMY
_CFG_2_10

ISPU_DUMMY
_CFG_2_9

ISPU_DUMMY
_CFG_2_8

ISPU_DUMMY_CFG_3_L 77h ISPU_DUMMY
_CFG_3_7

ISPU_DUMMY
_CFG_3_6

ISPU_DUMMY
_CFG_3_5

ISPU_DUMMY
_CFG_3_4

ISPU_DUMMY
_CFG_3_3

ISPU_DUMMY
_CFG_3_2

ISPU_DUMMY
_CFG_3_1

ISPU_DUMMY
_CFG_3_0

ISPU_DUMMY_CFG_3_H 78h ISPU_DUMMY
_CFG_3_15

ISPU_DUMMY
_CFG_3_14

ISPU_DUMMY
_CFG_3_13

ISPU_DUMMY
_CFG_3_12

ISPU_DUMMY
_CFG_3_11

ISPU_DUMMY
_CFG_3_10

ISPU_DUMMY
_CFG_3_9

ISPU_DUMMY
_CFG_3_8

ISPU_DUMMY_CFG_4_L 79h ISPU_DUMMY
_CFG_4_7

ISPU_DUMMY
_CFG_4_6

ISPU_DUMMY
_CFG_4_5

ISPU_DUMMY
_CFG_4_4

ISPU_DUMMY
_CFG_4_3

ISPU_DUMMY
_CFG_4_2

ISPU_DUMMY
_CFG_4_1

ISPU_DUMMY
_CFG_4_0

ISPU_DUMMY_CFG_4_H 7Ah ISPU_DUMMY
_CFG_4_15

ISPU_DUMMY
_CFG_4_14

ISPU_DUMMY
_CFG_4_13

ISPU_DUMMY
_CFG_4_12

ISPU_DUMMY
_CFG_4_11

ISPU_DUMMY
_CFG_4_10

ISPU_DUMMY
_CFG_4_9

ISPU_DUMMY
_CFG_4_8

A
N

5850 - R
ev 1

page 5/65

A
N

5850
R

egisters

2.1 ISPU interaction registers
The list of the registers for the ISPU functions available in the device is given in Table 3. ISPU interaction registers and Table 4. ISPU to
external resources. The ISPU interaction registers are accessible over the I²C/SPI interface when the ISPU_REG_ACCESS bit is set to 1 in the
FUNC_CFG_ACCESS (01h) register. These registers are also accessible from ISPU through the address indicated in the third column (ISPU
address), regardless of the configuration of the ISPU_REG_ACCESS bit.

Table 3. ISPU interaction registers

Register name Address ISPU
address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ISPU_CONFIG 02h 6802h 0 0 0 LATCHED 0 0 CLK_DIS ISPU_RST_N

ISPU_STATUS 04h 6804h 0 0 0 0 0 BOOT_END 0 0

ISPU_MEM_SEL 08h - 0 READ_MEM_EN 0 0 0 0 0 MEM_SEL

ISPU_MEM_ADDR1 09h - MEM_ADDR_15 MEM_ADDR_14 MEM_ADDR_13 MEM_ADDR_12 MEM_ADDR_11 MEM_ADDR_10 MEM_ADDR_9 MEM_ADDR_8

ISPU_MEM_ADDR0 0Ah - MEM_ADDR_7 MEM_ADDR_6 MEM_ADDR_5 MEM_ADDR_4 MEM_ADDR_3 MEM_ADDR_2 MEM_ADDR_1 MEM_ADDR_0

ISPU_MEM_DATA 0Bh - MEM_DATA_7 MEM_DATA_6 MEM_DATA_5 MEM_DATA_4 MEM_DATA_3 MEM_DATA_2 MEM_DATA_1 MEM_DATA_0

ISPU_IF2S_FLAG_L 0Ch 680Ch IF2S_7 IF2S_6 IF2S_5 IF2S_4 IF2S_3 IF2S_2 IF2S_1 IF2S_0

ISPU_IF2S_FLAG_H 0Dh 680Dh IF2S_15 IF2S_14 IF2S_13 IF2S_12 IF2S_11 IF2S_10 IF2S_9 IF2S_8

ISPU_S2IF_FLAG_L 0Eh 680Eh S2IF_7 S2IF_6 S2IF_5 S2IF_4 S2IF_3 S2IF_2 S2IF_1 S2IF_0

ISPU_S2IF_FLAG_H 0Fh 680Fh S2IF_15 S2IF_14 S2IF_13 S2IF_12 S2IF_11 S2IF_10 S2IF_9 S2IF_8

ISPU_DOUT_00_L 10h 6810h DOUT0_7 DOUT0_6 DOUT0_5 DOUT0_4 DOUT0_3 DOUT0_2 DOUT0_1 DOUT0_0

ISPU_DOUT_00_H 11h 6811h DOUT0_15 DOUT0_14 DOUT0_13 DOUT0_12 DOUT0_11 DOUT0_10 DOUT0_9 DOUT0_8

ISPU_DOUT_01_L 12h 6812h DOUT1_7 DOUT1_6 DOUT1_5 DOUT1_4 DOUT1_3 DOUT1_2 DOUT1_1 DOUT1_0

ISPU_DOUT_01_H 13h 6813h DOUT1_15 DOUT1_14 DOUT1_13 DOUT1_12 DOUT1_11 DOUT1_10 DOUT1_9 DOUT1_8

ISPU_DOUT_02_L 14h 6814h DOUT2_7 DOUT2_6 DOUT2_5 DOUT2_4 DOUT2_3 DOUT2_2 DOUT2_1 DOUT2_0

ISPU_DOUT_02_H 15h 6815h DOUT2_15 DOUT2_14 DOUT2_13 DOUT2_12 DOUT2_11 DOUT2_10 DOUT2_9 DOUT2_8

ISPU_DOUT_03_L 16h 6816h DOUT3_7 DOUT3_6 DOUT3_5 DOUT3_4 DOUT3_3 DOUT3_2 DOUT3_1 DOUT3_0

ISPU_DOUT_03_H 17h 6817h DOUT3_15 DOUT3_14 DOUT3_13 DOUT3_12 DOUT3_11 DOUT3_10 DOUT3_9 DOUT3_8

ISPU_DOUT_04_L 18h 6818h DOUT4_7 DOUT4_6 DOUT4_5 DOUT4_4 DOUT4_3 DOUT4_2 DOUT4_1 DOUT4_0

ISPU_DOUT_04_H 19h 6819h DOUT4_15 DOUT4_14 DOUT4_13 DOUT4_12 DOUT4_11 DOUT4_10 DOUT4_9 DOUT4_8

ISPU_DOUT_05_L 1Ah 681Ah DOUT5_7 DOUT5_6 DOUT5_5 DOUT5_4 DOUT5_3 DOUT5_2 DOUT5_1 DOUT5_0

ISPU_DOUT_05_H 1Bh 681Bh DOUT5_15 DOUT5_14 DOUT5_13 DOUT5_12 DOUT5_11 DOUT5_10 DOUT5_9 DOUT5_8

ISPU_DOUT_06_L 1Ch 681Ch DOUT6_7 DOUT6_6 DOUT6_5 DOUT6_4 DOUT6_3 DOUT6_2 DOUT6_1 DOUT6_0

ISPU_DOUT_06_H 1Dh 681Dh DOUT6_15 DOUT6_14 DOUT6_13 DOUT6_12 DOUT6_11 DOUT6_10 DOUT6_9 DOUT6_8

ISPU_DOUT_07_L 1Eh 681Eh DOUT7_7 DOUT7_6 DOUT7_5 DOUT7_4 DOUT7_3 DOUT7_2 DOUT7_1 DOUT7_0

ISPU_DOUT_07_H 1Fh 681Fh DOUT7_15 DOUT7_14 DOUT7_13 DOUT7_12 DOUT7_11 DOUT7_10 DOUT7_9 DOUT7_8

ISPU_DOUT_08_L 20h 6820h DOUT8_7 DOUT8_6 DOUT8_5 DOUT8_4 DOUT8_3 DOUT8_2 DOUT8_1 DOUT8_0

ISPU_DOUT_08_H 21h 6821h DOUT8_15 DOUT8_14 DOUT8_13 DOUT8_12 DOUT8_11 DOUT8_10 DOUT8_9 DOUT8_8

A
N

5850 - R
ev 1

page 6/65

A
N

5850
ISPU

 interaction registers

Register name Address ISPU
address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ISPU_DOUT_09_L 22h 6822h DOUT9_7 DOUT9_6 DOUT9_5 DOUT9_4 DOUT9_3 DOUT9_2 DOUT9_1 DOUT9_0

ISPU_DOUT_09_H 23h 6823h DOUT9_15 DOUT9_14 DOUT9_13 DOUT9_12 DOUT9_11 DOUT9_10 DOUT9_9 DOUT9_8

ISPU_DOUT_10_L 24h 6824h DOUT10_7 DOUT10_6 DOUT10_5 DOUT10_4 DOUT10_3 DOUT10_2 DOUT10_1 DOUT10_0

ISPU_DOUT_10_H 25h 6825h DOUT10_15 DOUT10_14 DOUT10_13 DOUT10_12 DOUT10_11 DOUT10_10 DOUT10_9 DOUT10_8

ISPU_DOUT_11_L 26h 6826h DOUT11_7 DOUT11_6 DOUT11_5 DOUT11_4 DOUT11_3 DOUT11_2 DOUT11_1 DOUT11_0

ISPU_DOUT_11_H 27h 6827h DOUT11_15 DOUT11_14 DOUT11_13 DOUT11_12 DOUT11_11 DOUT11_10 DOUT11_9 DOUT11_8

ISPU_DOUT_12_L 28h 6828h DOUT12_7 DOUT12_6 DOUT12_5 DOUT12_4 DOUT12_3 DOUT12_2 DOUT12_1 DOUT12_0

ISPU_DOUT_12_H 29h 6829h DOUT12_15 DOUT12_14 DOUT12_13 DOUT12_12 DOUT0_11 DOUT12_10 DOUT12_9 DOUT12_8

ISPU_DOUT_13_L 2Ah 682Ah DOUT13_7 DOUT13_6 DOUT13_5 DOUT13_4 DOUT13_3 DOUT13_2 DOUT13_1 DOUT13_0

ISPU_DOUT_13_H 2Bh 682Bh DOUT13_15 DOUT13_14 DOUT13_13 DOUT13_12 DOUT13_11 DOUT13_10 DOUT13_9 DOUT13_8

ISPU_DOUT_14_L 2Ch 682Ch DOUT14_7 DOUT14_6 DOUT14_5 DOUT14_4 DOUT14_3 DOUT14_2 DOUT14_1 DOUT14_0

ISPU_DOUT_14_H 2Dh 682Dh DOUT14_15 DOUT14_14 DOUT14_13 DOUT14_12 DOUT14_11 DOUT14_10 DOUT14_9 DOUT14_8

ISPU_DOUT_15_L 2Eh 682Eh DOUT15_7 DOUT15_6 DOUT15_5 DOUT15_4 DOUT15_3 DOUT15_2 DOUT15_1 DOUT15_0

ISPU_DOUT_15_H 2Fh 682Fh DOUT15_15 DOUT15_14 DOUT15_13 DOUT15_12 DOUT15_11 DOUT15_10 DOUT15_9 DOUT15_8

ISPU_DOUT_16_L 30h 6830h DOUT16_7 DOUT16_6 DOUT16_5 DOUT16_4 DOUT16_3 DOUT16_2 DOUT16_1 DOUT16_0

ISPU_DOUT_16_H 31h 6831h DOUT16_15 DOUT16_14 DOUT16_13 DOUT16_12 DOUT16_11 DOUT16_10 DOUT16_9 DOUT16_8

ISPU_DOUT_17_L 32h 6832h DOUT17_7 DOUT17_6 DOUT17_5 DOUT17_4 DOUT17_3 DOUT17_2 DOUT17_1 DOUT17_0

ISPU_DOUT_17_H 33h 6833h DOUT17_15 DOUT17_14 DOUT17_13 DOUT17_12 DOUT17_11 DOUT17_10 DOUT17_9 DOUT17_8

ISPU_DOUT_18_L 34h 6834h DOUT18_7 DOUT18_6 DOUT18_5 DOUT18_4 DOUT18_3 DOUT18_2 DOUT18_1 DOUT18_0

ISPU_DOUT_18_H 35h 6835h DOUT18_15 DOUT18_14 DOUT18_13 DOUT18_12 DOUT18_11 DOUT18_10 DOUT18_9 DOUT18_8

ISPU_DOUT_19_L 36h 6836h DOUT19_7 DOUT19_6 DOUT19_5 DOUT19_4 DOUT19_3 DOUT19_2 DOUT19_1 DOUT19_0

ISPU_DOUT_19_H 37h 6837h DOUT19_15 DOUT19_14 DOUT19_13 DOUT19_12 DOUT19_11 DOUT19_10 DOUT19_9 DOUT19_8

ISPU_DOUT_20_L 38h 6838h DOUT20_7 DOUT20_6 DOUT20_5 DOUT20_4 DOUT20_3 DOUT20_2 DOUT20_1 DOUT20_0

ISPU_DOUT_20_H 39h 6839h DOUT20_15 DOUT20_14 DOUT20_13 DOUT20_12 DOUT20_11 DOUT20_10 DOUT20_9 DOUT20_8

ISPU_DOUT_21_L 3Ah 683Ah DOUT21_7 DOUT21_6 DOUT21_5 DOUT21_4 DOUT21_3 DOUT21_2 DOUT21_1 DOUT21_0

ISPU_DOUT_21_H 3Bh 683Bh DOUT21_15 DOUT21_14 DOUT21_13 DOUT21_12 DOUT21_11 DOUT21_10 DOUT21_9 DOUT21_8

ISPU_DOUT_22_L 3Ch 683Ch DOUT22_7 DOUT22_6 DOUT22_5 DOUT22_4 DOUT22_3 DOUT22_2 DOUT22_1 DOUT22_0

ISPU_DOUT_22_H 3Dh 683Dh DOUT22_15 DOUT22_14 DOUT22_13 DOUT22_12 DOUT22_11 DOUT22_10 DOUT22_9 DOUT22_8

ISPU_DOUT_23_L 3Eh 683Eh DOUT23_7 DOUT23_6 DOUT23_5 DOUT23_4 DOUT23_3 DOUT23_2 DOUT23_1 DOUT23_0

ISPU_DOUT_23_H 3Fh 683Fh DOUT23_15 DOUT23_14 DOUT23_13 DOUT23_12 DOUT23_11 DOUT23_10 DOUT23_9 DOUT23_8

ISPU_DOUT_24_L 40h 6840h DOUT24_7 DOUT24_6 DOUT24_5 DOUT24_4 DOUT24_3 DOUT24_2 DOUT24_1 DOUT24_0

ISPU_DOUT_24_H 41h 6841h DOUT24_15 DOUT24_14 DOUT24_13 DOUT24_12 DOUT24_11 DOUT24_10 DOUT24_9 DOUT24_8

ISPU_DOUT_25_L 42h 6842h DOUT25_7 DOUT25_6 DOUT25_5 DOUT25_4 DOUT25_3 DOUT25_2 DOUT25_1 DOUT25_0

ISPU_DOUT_25_H 43h 6843h DOUT25_15 DOUT25_14 DOUT25_13 DOUT25_12 DOUT25_11 DOUT25_10 DOUT25_9 DOUT25_8

A
N

5850 - R
ev 1

page 7/65

A
N

5850
ISPU

 interaction registers

Register name Address ISPU
address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ISPU_DOUT_26_L 44h 6844h DOUT26_7 DOUT26_6 DOUT26_5 DOUT26_4 DOUT26_3 DOUT26_2 DOUT26_1 DOUT26_0

ISPU_DOUT_26_H 45h 6845h DOUT26_15 DOUT26_14 DOUT26_13 DOUT26_12 DOUT26_11 DOUT26_10 DOUT26_9 DOUT26_8

ISPU_DOUT_27_L 46h 6846h DOUT27_7 DOUT27_6 DOUT27_5 DOUT27_4 DOUT27_3 DOUT27_2 DOUT27_1 DOUT27_0

ISPU_DOUT_27_H 47h 6847h DOUT27_15 DOUT27_14 DOUT27_13 DOUT27_12 DOUT27_11 DOUT27_10 DOUT27_9 DOUT27_8

ISPU_DOUT_28_L 48h 6848h DOUT28_7 DOUT28_6 DOUT28_5 DOUT28_4 DOUT28_3 DOUT28_2 DOUT28_1 DOUT28_0

ISPU_DOUT_28_H 49h 6849h DOUT28_15 DOUT28_14 DOUT28_13 DOUT28_12 DOUT28_11 DOUT28_10 DOUT28_9 DOUT28_8

ISPU_DOUT_29_L 4Ah 684Ah DOUT29_7 DOUT29_6 DOUT29_5 DOUT29_4 DOUT29_3 DOUT29_2 DOUT29_1 DOUT29_0

ISPU_DOUT_29_H 4Bh 684Bh DOUT29_15 DOUT29_14 DOUT29_13 DOUT29_12 DOUT29_11 DOUT29_10 DOUT29_9 DOUT29_8

ISPU_DOUT_30_L 4Ch 684Ch DOUT30_7 DOUT30_6 DOUT30_5 DOUT30_4 DOUT30_3 DOUT30_2 DOUT30_1 DOUT30_0

ISPU_DOUT_30_H 4Dh 684Dh DOUT30_15 DOUT30_14 DOUT30_13 DOUT30_12 DOUT30_11 DOUT30_10 DOUT30_9 DOUT30_8

ISPU_DOUT_31_L 4Eh 684Eh DOUT31_7 DOUT31_6 DOUT10_5 DOUT31_4 DOUT31_3 DOUT31_2 DOUT31_1 DOUT31_0

ISPU_DOUT_31_H 4Fh 684Fh DOUT31_15 DOUT31_14 DOUT31_13 DOUT31_12 DOUT31_11 DOUT31_10 DOUT31_9 DOUT31_8

ISPU_INT1_CTRL0 50h 6850h ISPU_INT1
_CTRL7

ISPU_INT1
_CTRL6

ISPU_INT1
_CTRL5

ISPU_INT1
_CTRL4

ISPU_INT1
_CTRL3

ISPU_INT1
_CTRL2

ISPU_INT1
_CTRL1

ISPU_INT1
_CTRL0

ISPU_INT1_CTRL1 51h 6851h ISPU_INT1
_CTRL15

ISPU_INT1
_CTRL14

ISPU_INT1
_CTRL13

ISPU_INT1
_CTRL12

ISPU_INT1
_CTRL11

ISPU_INT1
_CTRL10

ISPU_INT1
_CTRL9

ISPU_INT1
_CTRL8

ISPU_INT1_CTRL2 52h 6852h ISPU_INT1
_CTRL23

ISPU_INT1
_CTRL22

ISPU_INT1
_CTRL21

ISPU_INT1
_CTRL20

ISPU_INT1
_CTRL19

ISPU_INT1
_CTRL18

ISPU_INT1
_CTRL17

ISPU_INT1
_CTRL16

ISPU_INT1_CTRL3 53h 6853h 0 0 ISPU_INT1
_CTRL29

ISPU_INT1
_CTRL28

ISPU_INT1
_CTRL27

ISPU_INT1
_CTRL26

ISPU_INT1
_CTRL25

ISPU_INT1
_CTRL24

ISPU_INT2_CTRL0 54h 6854h ISPU_INT2
_CTRL7

ISPU_INT2
_CTRL6

ISPU_INT2
_CTRL5

ISPU_INT2
_CTRL4

ISPU_INT2
_CTRL3

ISPU_INT2
_CTRL2

ISPU_INT2
_CTRL1

ISPU_INT2
_CTRL0

ISPU_INT2_CTRL1 55h 6855h ISPU_INT2
_CTRL15

ISPU_INT2
_CTRL14

ISPU_INT2
_CTRL13

ISPU_INT2
_CTRL12

ISPU_INT2
_CTRL11

ISPU_INT2
_CTRL10

ISPU_INT2
_CTRL9

ISPU_INT2
_CTRL8

ISPU_INT2_CTRL2 56h 6856h ISPU_INT2
_CTRL23

ISPU_INT2
_CTRL22

ISPU_INT2
_CTRL21

ISPU_INT2
_CTRL20

ISPU_INT2
_CTRL19

ISPU_INT2
_CTRL18

ISPU_INT2
_CTRL17

ISPU_INT2
_CTRL16

ISPU_INT2_CTRL3 57h 6857h 0 0 ISPU_INT2
_CTRL29

ISPU_INT2
_CTRL28

ISPU_INT2
_CTRL27

ISPU_INT2
_CTRL26

ISPU_INT2
_CTRL25

ISPU_INT2
_CTRL24

ISPU_INT_STATUS0 58h 6858h ISPU_INT_
STATUS7

ISPU_INT_
STATUS6

ISPU_INT_
STATUS5

ISPU_INT_
STATUS4

ISPU_INT_
STATUS3

ISPU_INT_
STATUS2

ISPU_INT_
STATUS1

ISPU_INT_
STATUS0

ISPU_INT_STATUS1 59h 6859h ISPU_INT_
STATUS15

ISPU_INT_
STATUS14

ISPU_INT_
STATUS13

ISPU_INT_
STATUS12

ISPU_INT_
STATUS11

ISPU_INT_
STATUS10

ISPU_INT_
STATUS9

ISPU_INT_
STATUS8

ISPU_INT_STATUS2 5Ah 685Ah ISPU_INT_
STATUS23

ISPU_INT_
STATUS22

ISPU_INT_
STATUS21

ISPU_INT_
STATUS20

ISPU_INT_
STATUS19

ISPU_INT_
STATUS18

ISPU_INT_
STATUS17

ISPU_INT_
STATUS16

ISPU_INT_STATUS3 5Bh 685Bh 0 0 ISPU_INT_
STATUS29

ISPU_INT_
STATUS28

ISPU_INT_
STATUS27

ISPU_INT_
STATUS26

ISPU_INT_
STATUS25

ISPU_INT_
STATUS24

ISPU_ALGO0 70h 6870h ISPU_ALGO7 ISPU_ALGO6 ISPU_ALGO5 ISPU_ALGO4 ISPU_ALGO3 ISPU_ALGO2 ISPU_ALGO1 ISPU_ALGO0

ISPU_ALGO1 71h 6871h ISPU_ALGO15 ISPU_ALGO14 ISPU_ALGO13 ISPU_ALGO12 ISPU_ALGO11 ISPU_ALGO10 ISPU_ALGO9 ISPU_ALGO8

ISPU_ALGO2 72h 6872h ISPU_ALGO23 ISPU_ALGO22 ISPU_ALGO21 ISPU_ALGO20 ISPU_ALGO19 ISPU_ALGO18 ISPU_ALGO17 ISPU_ALGO16

ISPU_ALGO3 73h 6873h 0 0 ISPU_ALGO29 ISPU_ALGO28 ISPU_ALGO27 ISPU_ALGO26 ISPU_ALGO25 ISPU_ALGO24

A
N

5850 - R
ev 1

page 8/65

A
N

5850
ISPU

 interaction registers

Table 4. ISPU to external resources

ISPU address (hex) Bytes Name

6940-6941 2 TIMESTAMP0 (40h), TIMESTAMP1 (41h)

6942-6943 2 TIMESTAMP2 (42h), TIMESTAMP3 (43h)

6974-6975 2 ISPU_DUMMY_CFG_1_L (73h), ISPU_DUMMY_CFG_1_H (74h)

6976-6977 2 ISPU_DUMMY_CFG_2_L (75h), ISPU_DUMMY_CFG_2_H (76h)

6978-6979 2 ISPU_DUMMY_CFG_3_L (77h), ISPU_DUMMY_CFG_3_H (78h)

697A-697B 2 ISPU_DUMMY_CFG_4_L (79h), ISPU_DUMMY_CFG_4_H (7Ah)

A
N

5850 - R
ev 1

page 9/65

A
N

5850
ISPU

 interaction registers

2.2 ISPU functions registers
The following table provides a list of the registers internally available in the ISPU architecture.

Table 5. ISPU interaction registers

Register name ISPU address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ISPU_GLB_CALL_EN 6800h - - - - - - - ISPU_GLB
_CALL_EN

ISPU_INT_PIN 685Ch 0 0 0 0 0 0 INT2 INT1

ISPU_ARAW_X_L 6880h ISPU_
ARAW_X_7

ISPU_
ARAW_X_6

ISPU_
ARAW_X_5

ISPU_
ARAW_X_4

ISPU_
ARAW_X_3

ISPU_
ARAW_X_2

ISPU_
ARAW_X_1

ISPU_
ARAW_X_0

ISPU_ARAW_X_H 6881h ISPU_
ARAW_X_15

ISPU_
ARAW_X_14

ISPU_
ARAW_X_13

ISPU_
ARAW_X_12

ISPU_
ARAW_X_11

ISPU_
ARAW_X_10

ISPU_
ARAW_X_9

ISPU_
ARAW_X_8

ISPU_ARAW_Y_L 6884h ISPU_
ARAW_Y_7

ISPU_
ARAW_Y_6

ISPU_
ARAW_Y_5

ISPU_
ARAW_Y_4

ISPU_
ARAW_Y_3

ISPU_
ARAW_Y_2

ISPU_
ARAW_Y_1

ISPU_
ARAW_Y_0

ISPU_ARAW_Y_H 6885h ISPU_
ARAW_Y_15

ISPU_
ARAW_Y_14

ISPU_
ARAW_Y_13

ISPU_
ARAW_Y_12

ISPU_
ARAW_Y_11

ISPU_
ARAW_Y_10

ISPU_
ARAW_Y_9

ISPU_
ARAW_Y_8

ISPU_ARAW_Z_L 6888h ISPU_
ARAW_Z_7

ISPU_
ARAW_Z_6

ISPU_
ARAW_Z_5

ISPU_
ARAW_Z_4

ISPU_
ARAW_Z_3

ISPU_
ARAW_Z_2

ISPU_
ARAW_Z_1

ISPU_
ARAW_Z_0

ISPU_ARAW_Z_H 6889h ISPU_
ARAW_Z_15

ISPU_
ARAW_Z_14

ISPU_
ARAW_Z_13

ISPU_
ARAW_Z_12

ISPU_
ARAW_Z_11

ISPU_
ARAW_Z_10

ISPU_
ARAW_Z_9

ISPU_
ARAW_Z_8

ISPU_GRAW_X_L 688Ch ISPU_
GRAW_X_7

ISPU_
GRAW_X_6

ISPU_
GRAW_X_5

ISPU_
GRAW_X_4

ISPU_
GRAW_X_3

ISPU_
GRAW_X_2

ISPU_
GRAW_X_1

ISPU_
GRAW_X_0

ISPU_GRAW_X_H 688Dh ISPU_
GRAW_X_15

ISPU_
GRAW_X_14

ISPU_
GRAW_X_13

ISPU_
GRAW_X_12

ISPU_
GRAW_X_11

ISPU_
GRAW_X_10

ISPU_
GRAW_X_9

ISPU_
GRAW_X_8

ISPU_GRAW_Y_L 6890h ISPU_
GRAW_Y_7

ISPU_
GRAW_Y_6

ISPU_
GRAW_Y_5

ISPU_
GRAW_Y_4

ISPU_
GRAW_Y_3

ISPU_
GRAW_Y_2

ISPU_
GRAW_Y_1

ISPU_
GRAW_Y_0

ISPU_GRAW_Y_H 6891h ISPU_
GRAW_Y_15

ISPU_
GRAW_Y_14

ISPU_
GRAW_Y_13

ISPU_
GRAW_Y_12

ISPU_
GRAW_Y_11

ISPU_
GRAW_Y_10

ISPU_
GRAW_Y_9

ISPU_
GRAW_Y_8

ISPU_GRAW_Z_L 6894h ISPU_
GRAW_Z_7

ISPU_
GRAW_Z_6

ISPU_
GRAW_Z_5

ISPU_
GRAW_Z_4

ISPU_
GRAW_Z_3

ISPU_
GRAW_Z_2

ISPU_
GRAW_Z_1

ISPU_
GRAW_Z_0

ISPU_GRAW_Z_H 6895h ISPU_
GRAW_Z_15

ISPU_
GRAW_Z_14

ISPU_
GRAW_Z_13

ISPU_
GRAW_Z_12

ISPU_
GRAW_Z_11

ISPU_
GRAW_Z_10

ISPU_
GRAW_Z_9

ISPU_
GRAW_z_8

ISPU_ERAW_0_L 6898h ISPU_
ERAW_0_7

ISPU_
ERAW_0_6

ISPU_
ERAW_0_5

ISPU_
ERAW_0_4

ISPU_
ERAW_0_3

ISPU_
ERAW_0_2

ISPU_
ERAW_0_1

ISPU_
ERAW_0_0

ISPU_ERAW_0_H 6899h ISPU_
ERAW_0_15

ISPU_
ERAW_0_14

ISPU_
ERAW_0_13

ISPU_
ERAW_0_12

ISPU_
ERAW_0_11

ISPU_
ERAW_0_10

ISPU_
ERAW_0_9

ISPU_
ERAW_0_8

ISPU_ERAW_1_L 689Ch ISPU_
ERAW_1_7

ISPU_
ERAW_1_6

ISPU_
ERAW_1_5

ISPU_
ERAW_1_4

ISPU_
ERAW_1_3

ISPU_
ERAW_1_2

ISPU_
ERAW_1_1

ISPU_
ERAW_1_0

ISPU_ERAW_1_H 689Dh ISPU_
ERAW_1_15

ISPU_
ERAW_1_14

ISPU_
ERAW_1_13

ISPU_
ERAW_1_12

ISPU_
ERAW_1_11

ISPU_
ERAW_1_10

ISPU_
ERAW_1_9

ISPU_
ERAW_1_8

ISPU_ERAW_2_L 68A0h ISPU_
ERAW_2_7

ISPU_
ERAW_2_6

ISPU_
ERAW_2_5

ISPU_
ERAW_2_4

ISPU_
ERAW_2_3

ISPU_
ERAW_2_2

ISPU_
ERAW_2_1

ISPU_
ERAW_2_0

ISPU_ERAW_2_H 68A1h ISPU_
ERAW_2_15

ISPU_
ERAW_2_14

ISPU_
ERAW_2_13

ISPU_
ERAW_2_12

ISPU_
ERAW_2_11

ISPU_
ERAW_2_10

ISPU_
ERAW_2_9

ISPU_
ERAW_2_8

A
N

5850 - R
ev 1

page 10/65

A
N

5850
ISPU

 functions registers

Register name ISPU address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ISPU_TEMP_L 68A4h ISPU_
TEMP_7

ISPU_
TEMP_6

ISPU_
TEMP_5

ISPU_
TEMP_4

ISPU_
TEMP_3

ISPU_
TEMP_2

ISPU_
TEMP_1

ISPU_
TEMP_0

ISPU_TEMP_H 68A5h ISPU_
TEMP_15

ISPU_
TEMP_14

ISPU_
TEMP_13

ISPU_
TEMP_12

ISPU_
TEMP_11

ISPU_
TEMP_10

ISPU_
TEMP_9

ISPU_
TEMP_8

ISPU_CALL_EN_0 68B8h ISPU_CALL_
ALGO_6

ISPU_CALL_
ALGO_5

ISPU_CALL_
ALGO_4

ISPU_CALL_
ALGO_3

ISPU_CALL_
ALGO_2

ISPU_CALL_
ALGO_1

ISPU_CALL_
ALGO_0 0

ISPU_CALL_EN_1 68B9h ISPU_CALL_
ALGO_14

ISPU_CALL_
ALGO_13

ISPU_CALL_
ALGO_12

ISPU_CALL_
ALGO_11

ISPU_CALL_
ALGO_10

ISPU_CALL_
ALGO_9

ISPU_CALL_
ALGO_8

ISPU_CALL_
ALGO_7

ISPU_CALL_EN_2 68BAh ISPU_CALL_
ALGO_22

ISPU_CALL_
ALGO_21

ISPU_CALL_
ALGO_20

ISPU_CALL_
ALGO_19

ISPU_CALL_
ALGO_18

ISPU_CALL_
ALGO_17

ISPU_CALL_
ALGO_16

ISPU_CALL_
ALGO_15

ISPU_CALL_EN_3 68BBh 0 ISPU_CALL_
ALGO_29

ISPU_CALL_
ALGO_28

ISPU_CALL_
ALGO_27

ISPU_CALL_
ALGO_26

ISPU_CALL_
ALGO_25

ISPU_CALL_
ALGO_24

ISPU_CALL_
ALGO_23

ISPU_DTIME_0_L 6948h ISPU_DTIME_7 ISPU_DTIME_6 ISPU_DTIME_5 ISPU_DTIME_4 ISPU_DTIME_3 ISPU_DTIME_2 ISPU_DTIME_1 ISPU_DTIME_0

ISPU_DTIME_0_H 6949h ISPU_DTIME_15 ISPU_DTIME_14 ISPU_DTIME_13 ISPU_DTIME_12 ISPU_DTIME_11 ISPU_DTIME_10 ISPU_DTIME_9 ISPU_DTIME_8

ISPU_DTIME_1_L 694Ah ISPU_DTIME_23 ISPU_DTIME_22 ISPU_DTIME_21 ISPU_DTIME_20 ISPU_DTIME_19 ISPU_DTIME_18 ISPU_DTIME_17 ISPU_DTIME_16

ISPU_DTIME_1_H 694Bh ISPU_DTIME_31 ISPU_DTIME_30 ISPU_DTIME_29 ISPU_DTIME_28 ISPU_DTIME_27 ISPU_DTIME_26 ISPU_DTIME_25 ISPU_DTIME_24

A
N

5850 - R
ev 1

page 11/65

A
N

5850
ISPU

 functions registers

2.3 Sensor hub registers
The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to 1 in the FUNC_CFG_ACCESS (01h) register.

Table 6. Sensor hub registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SENSOR_HUB_1 02h SensorHub1_7 SensorHub1_6 SensorHub1_5 SensorHub1_4 SensorHub1_3 SensorHub1_2 SensorHub1_1 SensorHub1_0

SENSOR_HUB_2 03h SensorHub2_7 SensorHub2_6 SensorHub2_5 SensorHub2_4 SensorHub2_3 SensorHub2_2 SensorHub2_1 SensorHub2_0

SENSOR_HUB_3 04h SensorHub3_7 SensorHub3_6 SensorHub3_5 SensorHub3_4 SensorHub3_3 SensorHub3_2 SensorHub3_1 SensorHub3_0

SENSOR_HUB_4 05h SensorHub4_7 SensorHub4_6 SensorHub4_5 SensorHub4_4 SensorHub4_3 SensorHub4_2 SensorHub4_1 SensorHub4_0

SENSOR_HUB_5 06h SensorHub5_7 SensorHub5_6 SensorHub5_5 SensorHub5_4 SensorHub5_3 SensorHub5_2 SensorHub5_1 SensorHub5_0

SENSOR_HUB_6 07h SensorHub6_7 SensorHub6_6 SensorHub6_5 SensorHub6_4 SensorHub6_3 SensorHub6_2 SensorHub6_1 SensorHub6_0

SENSOR_HUB_7 08h SensorHub7_7 SensorHub7_6 SensorHub7_5 SensorHub7_4 SensorHub7_3 SensorHub7_2 SensorHub7_1 SensorHub7_0

SENSOR_HUB_8 09h SensorHub8_7 SensorHub8_6 SensorHub8_5 SensorHub8_4 SensorHub8_3 SensorHub8_2 SensorHub8_1 SensorHub8_0

SENSOR_HUB_9 0Ah SensorHub9_7 SensorHub9_6 SensorHub9_5 SensorHub9_4 SensorHub9_3 SensorHub9_2 SensorHub9_1 SensorHub9_0

SENSOR_HUB_10 0Bh SensorHub10_7 SensorHub10_6 SensorHub10_5 SensorHub10_4 SensorHub10_3 SensorHub10_2 SensorHub10_1 SensorHub10_0

SENSOR_HUB_11 0Ch SensorHub11_7 SensorHub11_6 SensorHub11_5 SensorHub11_4 SensorHub11_3 SensorHub11_2 SensorHub11_1 SensorHub11_0

SENSOR_HUB_12 0Dh SensorHub12_7 SensorHub12_6 SensorHub12_5 SensorHub12_4 SensorHub12_3 SensorHub12_2 SensorHub12_1 SensorHub12_0

SENSOR_HUB_13 0Eh SensorHub13_7 SensorHub13_6 SensorHub13_5 SensorHub13_4 SensorHub13_3 SensorHub13_2 SensorHub13_1 SensorHub13_0

SENSOR_HUB_14 0Fh SensorHub14_7 SensorHub14_6 SensorHub14_5 SensorHub14_4 SensorHub14_3 SensorHub14_2 SensorHub14_1 SensorHub14_0

SENSOR_HUB_15 10h SensorHub15_7 SensorHub15_6 SensorHub15_5 SensorHub15_4 SensorHub15_3 SensorHub15_2 SensorHub15_1 SensorHub15_0

SENSOR_HUB_16 11h SensorHub16_7 SensorHub16_6 SensorHub16_5 SensorHub16_4 SensorHub16_3 SensorHub16_2 SensorHub16_1 SensorHub16_0

SENSOR_HUB_17 12h SensorHub17_7 SensorHub17_6 SensorHub17_5 SensorHub17_4 SensorHub17_3 SensorHub17_2 SensorHub17_1 SensorHub17_0

SENSOR_HUB_18 13h SensorHub18_7 SensorHub18_6 SensorHub18_5 SensorHub18_4 SensorHub18_3 SensorHub18_2 SensorHub18_1 SensorHub18_0

MASTER_CONFIG 14h RST_MASTER
_REGS WRITE_ONCE START_CONFIG PASS_

THROUGH_MODE SHUB_PU_EN MASTER_ON AUX_SENS_ON_1 AUX_SENS_ON_0

SLV0_ADD 15h slave0_add6 slave0_add5 slave0_add4 slave0_add3 slave0_add2 slave0_add1 slave0_add0 rw_0

SLV0_SUBADD 16h slave0_reg7 slave0_reg6 slave0_reg5 slave0_reg4 slave0_reg3 slave0_reg2 slave0_reg1 slave0_reg0

SLV0_CONFIG 17h SHUB_ODR_1 SHUB_ODR_0 0 0 0 Slave0_numop2 Slave0_numop1 Slave0_numop0

SLV1_ADD 18h Slave1_add6 Slave1_add5 Slave1_add4 Slave1_add3 Slave1_add2 Slave1_add1 Slave1_add0 r_1

SLV1_SUBADD 19h Slave1_reg7 Slave1_reg6 Slave1_reg5 Slave1_reg4 Slave1_reg3 Slave1_reg2 Slave1_reg1 Slave1_reg0

SLV1_CONFIG 1Ah 0 0 0 0 0 Slave1_numop2 Slave1_numop1 Slave1_numop0

SLV2_ADD 1Bh Slave2_add6 Slave2_add5 Slave2_add4 Slave2_add3 Slave2_add2 Slave2_add1 Slave2_add0 r_2

SLV2_SUBADD 1Ch Slave2_reg7 Slave2_reg6 Slave2_reg5 Slave2_reg4 Slave2_reg3 Slave2_reg2 Slave2_reg1 Slave2_reg0

SLV2_CONFIG 1Dh 0 0 0 0 0 Slave2_numop2 Slave2_numop1 Slave2_numop0

SLV3_ADD 1Eh Slave3_add6 Slave3_add5 Slave3_add4 Slave3_add3 Slave3_add2 Slave3_add1 Slave3_add0 r_3

SLV3_SUBADD 1Fh Slave3_reg7 Slave3_reg6 Slave3_reg5 Slave3_reg4 Slave3_reg3 Slave3_reg2 Slave3_reg1 Slave3_reg0

A
N

5850 - R
ev 1

page 12/65

A
N

5850
Sensor hub registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SLV3_CONFIG 20h 0 0 0 0 0 Slave3_numop2 Slave3_numop1 Slave3_numop0

DATAWRITE_SLV0 21h Slave0_dataw7 Slave0_dataw6 Slave0_dataw5 Slave0_dataw4 Slave0_dataw3 Slave0_dataw2 Slave0_dataw1 Slave0_dataw0

STATUS_MASTER 22h WR_ONCE_DONE SLAVE3_NACK SLAVE2_NACK SLAVE1_NACK SLAVE0_NACK 0 0 SENS_HUB
_ENDOP

A
N

5850 - R
ev 1

page 13/65

A
N

5850
Sensor hub registers

3 Operating modes

The ISM330IS provides three possible operating configurations:
• only accelerometer active and gyroscope in power-down or sleep mode
• only gyroscope active and accelerometer in power-down
• both accelerometer and gyroscope active with independent ODR
The device offers a wide Vdd voltage range from 1.71 V to 3.6 V and a Vdd_IO range from 1.62 V to 3.6 V. The
power-on sequence is not restricted. The Vdd/Vdd_IO pins can be set to either power supply level or to ground
level (they must not be left floating) and no specific sequence is required for powering them on.
In order to avoid potential conflicts, during the power-on sequence it is recommended to set the lines (on the host
side) connected to the device IO pins floating or connected to ground, until Vdd_IO is set. After Vdd_IO is set,
the lines connected to the IO pins have to be configured according to their default status described in Table 1. In
order to avoid an unexpected increase in current consumption, the input pins which are not pulled-up/pulled-down
must be polarized by the host.
When the Vdd power supply is applied, the device performs a 10 ms (maximum) boot procedure to load the
trimming parameters. After the boot is completed, both the accelerometer and the gyroscope are automatically
configured in power-down mode. To guarantee proper power-off of the device it is recommended to maintain the
duration of the Vdd line to GND for at least 100 μs.
The accelerometer and the gyroscope can be independently configured in three different power modes: power-
down, low-power, and high-performance mode. They are allowed to have different data rates without any limit.
The gyroscope sensor can also be set in sleep mode to reduce its power consumption.
When both the accelerometer and gyroscope are on, the accelerometer is synchronized with the gyroscope, and
the data rates of the two sensors are integer multiples of each other.
Referring to the ISM330IS datasheet, the output data rate (ODR_XL) bits of the CTRL1_XL register and the
high-performance mode (XL_HM_MODE) bit of the CTRL6_C register are used to select the output data rate and
the power mode of the accelerometer (Table 7. Accelerometer ODR and power mode selection).

Table 7. Accelerometer ODR and power mode selection

ODR_XL[3:0]
ODR when

XL_HM_MODE = 1

ODR when

XL_HM_MODE = 0

0000 Power-down mode Power-down mode

1011 1.6 Hz (low-power mode only) 12.5 Hz (high-performance mode)

0001 12.5 Hz (low-power mode) 12.5 Hz (high-performance mode)

0010 26 Hz (low-power mode) 26 Hz (high-performance mode)

0011 52 Hz (low-power mode) 52 Hz (high-performance mode)

0100 104 Hz (low-power mode) 104 Hz (high-performance mode)

0101 208 Hz (low-power mode) 208 Hz (high-performance mode)

0110 416 Hz (high-performance mode) 416 Hz (high-performance mode)

0111 833 Hz (high-performance mode) 833 Hz (high-performance mode)

1000 1667 Hz (high-performance mode) 1667 Hz (high-performance mode)

1001 3333 Hz (high-performance mode) 3333 Hz (high-performance mode)

1010 6667 Hz (high-performance mode) 6667 Hz (high-performance mode)

AN5850
Operating modes

AN5850 - Rev 1 page 14/65

The output data rate (ODR_G) bits of the CTRL2_G register and the high-performance mode (G_HM_MODE) bit
of the CTRL7_G register are used to select the output data rate and the power mode of the gyroscope sensor
(Table 8. Gyroscope ODR and power mode selection).

Table 8. Gyroscope ODR and power mode selection

ODR_G[3:0]
ODR when

G_HM_MODE = 1

ODR when

G_HM_MODE = 0

0000 Power-down mode Power-down mode

0001 12.5 Hz (low-power mode) 12.5 Hz (high-performance mode)

0010 26 Hz (low-power mode) 26 Hz (high-performance mode)

0011 52 Hz (low-power mode) 52 Hz (high-performance mode)

0100 104 Hz (low-power mode) 104 Hz (high-performance mode)

0101 208 Hz (low-power mode) 208 Hz (high-performance mode)

0110 416 Hz (high-performance mode) 416 Hz (high-performance mode)

0111 833 Hz (high-performance mode) 833 Hz (high-performance mode)

1000 1667 Hz (high-performance mode) 1667 Hz (high-performance mode)

1001 3333 Hz (high-performance mode) 3333 Hz (high-performance mode)

1010 6667 Hz (high-performance mode) 6667 Hz (high-performance mode)

Table 9. Power consumption (@ Vdd = 1.8 V, T = 25 °C) shows the typical values of power consumption for the
different operating modes.

Table 9. Power consumption (@ Vdd = 1.8 V, T = 25 °C)

ODR [Hz] Accelerometer only Gyroscope only Combo [accelerometer + gyroscope]

Power-down mode - - 6 μA

Sleep mode - 285 μA -

1.6 Hz (low-power mode) 15 μA - -

12.5 Hz (low-power mode) 20 μA 290 μA 300 μA

26 Hz (low-power mode) 25 μA 300 μA 310 μA

52 Hz (low-power mode) 37 μA 320 μA 330 μA

104 Hz (low-power mode) 55 μA 350 μA 375 μA

208 Hz (low-power mode) 97 μA 410 μA 465 μA

12.5 Hz (high-performance mode) 180 μA 490 μA 595 μA

26 Hz (high-performance mode) 180 μA 490 μA 595 μA

52 Hz (high-performance mode) 180 μA 490 μA 595 μA

104 Hz (high-performance mode) 180 μA 490 μA 595 μA

208 Hz (high-performance mode) 180 μA 490 μA 595 μA

416 Hz (high-performance mode) 180 μA 490 μA 595 μA

833 Hz (high-performance mode) 180 μA 490 μA 595 μA

1667 Hz (high-performance mode) 180 μA 490 μA 595 μA

3333 Hz (high-performance mode) 180 μA 490 μA 595 μA

6667 Hz (high-performance mode) 180 μA 490 μA 595 μA

AN5850
Operating modes

AN5850 - Rev 1 page 15/65

3.1 Power-down mode
When the accelerometer/gyroscope is in power-down mode, almost all internal blocks of the device are switched
off to minimize power consumption. The digital interfaces (I²C and SPI) are still active to allow communication with
the device. The content of the configuration registers is preserved and the output data registers are not updated,
keeping the last data sampled in memory before going into power-down mode.

3.2 High-performance mode
In high-performance mode, all accelerometer/gyroscope circuitry is always on and data are generated at the data
rate selected through the ODR_XL/ODR_G bits.
Data interrupt generation is active.

3.3 Low-power mode
While high-performance mode guarantees the best performance in terms of noise, low-power mode further
reduces the current consumption. The accelerometer/gyroscope data reading chain is automatically turned on
and off to save power. In the gyroscope device, only the driving circuitry is always on.
Data interrupt generation is active.

3.4 Gyroscope sleep mode
While the gyroscope is in sleep mode the circuitry that drives the oscillation of the gyroscope mass is kept
active. Compared to gyroscope power-down, turn-on time from sleep mode to low-power/high-performance mode
is drastically reduced.
If the gyroscope is not configured in power-down mode, it enters sleep mode when the sleep mode (SLEEP_G)
bit of the CTRL4_C register is set to 1, regardless of the selected gyroscope ODR. If the gyroscope is configured
in power-down mode, the SLEEP_G bit configuration is ignored.

3.5 Connection modes
The ISM330IS offers two different connection modes, described in detail in this document:
• Mode 1: it is the connection mode enabled by default. The I²C slave interface or SPI (3- / 4-wire) serial

interface is available.
• Mode 2: it is the sensor hub mode. The I²C slave interface or SPI (3- / 4-wire) serial interface and

I²C interface master for external sensor connections are available. This connection mode is described in
Section 6 Mode 2 - sensor hub mode.

AN5850
Power-down mode

AN5850 - Rev 1 page 16/65

3.6 Accelerometer bandwidth
The accelerometer sampling chain is represented by a cascade of three main blocks: an analog anti-aliasing
low-pass filter, an ADC converter, and a digital low-pass filter.
As shown in Figure 2. Accelerometer filtering chain, the analog signal coming from the mechanical parts is filtered
by an analog low-pass anti-aliasing filter before being converted by the ADC. The anti-aliasing filter is enabled in
high-performance mode only.

Figure 2. Accelerometer filtering chain

Digital
LP filter

ODR_XL[3:0]

LPF1
ADC

Analog
anti-aliasing
LP filter

SPI /
I2C

(1)

(1)
The cutoff value of the LPF1 output is:
• ODR / 2 in high-performance mode
• 700 Hz in low-power mode

The digital low-pass filter LPF1 cannot be configured by the user and its cutoff frequency depends on the
accelerometer mode selected:
• ODR / 2 when the accelerometer is configured in high-performance mode
• 700 Hz when the accelerometer is configured in low-power mode

AN5850
Accelerometer bandwidth

AN5850 - Rev 1 page 17/65

3.7 Gyroscope bandwidth
The gyroscope filtering chain configuration is shown in Figure 3. Gyroscope filtering chain. The analog signal
coming from the mechanical parts is converted by the ADC and the converted signal is then processed by a
digital low-pass filter (LPF1).

Figure 3. Gyroscope filtering chain

Digital
LP filter

ODR_G[3:0]

LPF1
ADC SPI /

I2C

The digital LPF1 filter cannot be configured by the user and its cutoff frequency depends on the selected
gyroscope ODR. When the gyroscope ODR is equal to 6667 Hz, the LPF1 filter is bypassed.
The gyroscope bandwidth is summarized in the following table.

Table 10. Gyroscope bandwidth

Gyroscope ODR [Hz] Bandwidth [Hz]

12.5 4

26 8

52 17

104 33

208 67

416 137

833 312

1667 988

3333 1161

6667 1250

AN5850
Gyroscope bandwidth

AN5850 - Rev 1 page 18/65

3.8 Accelerometer and gyroscope turn-on/off time
The accelerometer reading chain contains low-pass filtering to improve signal-to-noise performance and to reduce
aliasing effects. For this reason, it is necessary to take into account the settling time of the filters when the
accelerometer power mode is switched or when the accelerometer ODR is changed.
The maximum overall turn-on/off time in order to switch accelerometer power modes or accelerometer ODR is
shown in Table 11. Accelerometer turn-on/off time

Note: The accelerometer ODR timing is not impacted by power mode changes (a new configuration is effective after
the completion of the current period).

Table 11. Accelerometer turn-on/off time

Starting mode Target mode Max turn-on/off time(1)

Power-down Low-power See Table 12. Accelerometer samples to be discarded

Power-down High-performance See Table 12. Accelerometer samples to be discarded

Low-power High-performance See Table 12. Accelerometer samples to be discarded + discard 1 additional
sample

Low-power Low-power (ODR change) See Table 12. Accelerometer samples to be discarded

High-performance Low-power See Table 12. Accelerometer samples to be discarded + discard 1 additional
sample

High-performance
High-performance

@ ODR < 6667 Hz
Discard 3 samples

High-performance
High-performance

@ ODR = 6667 Hz
Discard 7 samples

Low-power / high-performance Power-down 1 µs

1. Settling time @ 99% of the final value

Table 12. Accelerometer samples to be discarded

Target mode
accelerometer ODR [Hz] Number of samples to be discarded

1.6 (low-power) 0 (first sample correct)

12.5 (low-power) 0 (first sample correct)

26 (low-power) 0 (first sample correct)

52 (low-power) 0 (first sample correct)

104 (low-power) 0 (first sample correct)

208 (low-power) 0 (first sample correct)

12.5 (high-performance) 1

26 (high-performance) 1

52 (high-performance) 1

104 (high-performance) 1

208 (high-performance) 1

416 (high-performance) 1

833 (high-performance) 1

1667 (high-performance) 4

3333 (high-performance) 10

6667 (high-performance) 32

AN5850
Accelerometer and gyroscope turn-on/off time

AN5850 - Rev 1 page 19/65

Turn-on/off time has to be considered also for the gyroscope sensor when switching its modes or when the
gyroscope ODR is changed.
The maximum overall turn-on/off time in order to switch gyroscope power modes or gyroscope ODR is shown in
Table 13. Gyroscope turn-on/off time.

Note: The gyroscope ODR timing is not impacted by power mode changes (a new configuration is effective after the
completion of the current period).

Table 13. Gyroscope turn-on/off time

Starting mode Target mode Max turn-on/off time (1)

Power-down Sleep 70 ms

Power-down Low-power 70 ms + discard 1 sample

Power-down High-performance 70 ms + see Table 14. Gyroscope samples to be discarded

Sleep Low-power Discard 1 sample

Sleep High-performance See Table 14. Gyroscope samples to be discarded

Low-power High-performance Discard 2 samples

Low-power
Low-power

(ODR change)
Discard 1 sample

High-performance Low-power Discard 1 sample

High-performance
High-performance

(ODR change)
Discard 2 samples

Low-power / high-performance Power-down
1 µs if both accelerometer and gyroscope in PD

300 µs if accelerometer not in PD

1. Settling time @ 99% of the final value

Table 14. Gyroscope samples to be discarded

Gyroscope ODR [Hz] Number of samples to be discarded

12.5 Hz 2

26 Hz 3

52 Hz 3

104 Hz 3

208 Hz 3

416 Hz 3

833 Hz 3

1667 Hz 135

3333 Hz 270

6667 Hz 540

AN5850
Accelerometer and gyroscope turn-on/off time

AN5850 - Rev 1 page 20/65

3.9 Reboot and software reset
After the device is powered up, it performs a 10 ms (maximum) boot procedure to load the trimming parameters.
After the boot is completed, both the accelerometer and the gyroscope are automatically configured in power-
down mode. During the boot time the registers are not accessible.
After power-up, the trimming parameters can be reloaded by setting the BOOT bit of the CTRL3_C register to 1.
No toggle of the device power lines is required and the content of the device control registers is not modified. If a
reset to the default value of the control registers is required, it can be performed by setting the SW_RESET bit of
the CTRL3_C register to 1. When this bit is set to 1, the following registers are reset to their default value:
• FUNC_CFG_ACCESS (01h)
• PIN_CTRL (02h)
• INT1_CTRL (0Dh) and INT2_CTRL (0Eh)
• CTRL1_XL (10h) through CTRL10_C (19h)
The software reset procedure takes a maximum of 50 µs. The status of the reset is signaled by the status of the
SW_RESET bit of the CTRL3_C register. Once the reset is completed, this bit is automatically set low.
The status of the boot is signaled by the status of the BOOT bit of the CTRL3_C register. Once the reboot is
completed, this bit is automatically set low. The boot status signal can also be driven to the INT1 interrupt pin by
setting the INT1_BOOT bit of the INT1_CTRL register to 1. This signal is set high while the boot is running and it
is set low again at the end of the boot procedure.
The reboot flow is as follows:
1. Set both the accelerometer and gyroscope in power-down mode
2. Set the INT1_BOOT bit of the INT1_CTRL register to 1 [optional]
3. Set the BOOT bit of the CTRL3_C register to 1
4. Monitor reboot status, three possibilities:

a. Wait 10 ms
b. Monitor the INT1 pin until it returns to 0 (step 2. is mandatory in this case)
c. Poll the BOOT bit of CTRL3_C until it returns to 0

The software reset flow is as follows:
1. Set both the accelerometer and gyroscope in power-down mode
2. Set the SW_RESET bit of CTRL3_C to 1
3. Monitor the software reset status, two possibilities:

a. Wait 50 µs
b. Poll the SW_RESET bit of CTRL3_C until it returns to 0

In order to avoid conflicts, the reboot and the software reset must not be executed at the same time (do not set
to 1 at the same time both the BOOT bit and SW_RESET bit of CTRL3_C register). The above flows must be
performed serially.
For the boot and software reset of the ISPU core, refer to Section 9 ISPU.

AN5850
Reboot and software reset

AN5850 - Rev 1 page 21/65

4 Mode 1 - reading output data

4.1 Startup sequence
Once the device is powered up, it automatically downloads the calibration coefficients from the embedded
flash to the internal registers. When the boot procedure is completed, that is, after approximately 10 ms, the
accelerometer and gyroscope automatically enter power-down mode.
To turn on the accelerometer and gather acceleration data, it is necessary to select an output data rate setting
different from power-down through the CTRL1_XL register.
The following general-purpose sequence can be used to configure the accelerometer:

1. Write INT1_CTRL = 01h // Accelerometer data-ready interrupt on INT1

2. Write CTRL1_XL = 60h // Accelerometer 416 Hz (high-performance mode)

To turn on the gyroscope and gather angular rate data, it is necessary to select an output data rate setting
different from power-down through the CTRL2_G register.
The following general-purpose sequence can be used to configure the gyroscope:

1. Write INT1_CTRL = 02h // Gyroscope data-ready interrupt on INT1

2. Write CTRL2_G = 60h // Gyroscope = 416 Hz (high-performance mode)

4.2 Using the status register
The device is provided with a STATUS_REG register which can be polled to check when a new set of data is
available. The XLDA bit is set to 1 when a new set of data is available at accelerometer output. The GDA bit is set
to 1 when a new set of data is available at the gyroscope output.
For the accelerometer (the gyroscope is similar), the read of the output registers can be performed as follows:
1. Read STATUS_REG
2. If XLDA = 0, then go to 1
3. Read OUTX_L_A
4. Read OUTX_H_A
5. Read OUTY_L_A
6. Read OUTY_H_A
7. Read OUTZ_L_A
8. Read OUTZ_H_A
9. Data processing
10. Go to 1

AN5850
Mode 1 - reading output data

AN5850 - Rev 1 page 22/65

4.3 Using the data-ready signal
The device can be configured to have a hardware signal to determine when a new set of measurement data is
available to be read.
For the accelerometer sensor, the data-ready signal is represented by the XLDA bit of the STATUS_REG register.
The signal can be driven to the INT1 pin by setting the INT1_DRDY_XL bit of the INT1_CTRL register to 1 and to
the INT2 pin by setting the INT2_DRDY_XL bit of the INT2_CTRL register to 1.
For the gyroscope sensor, the data-ready signal is represented by the GDA bit of the STATUS_REG register. The
signal can be driven to the INT1 pin by setting the INT1_DRDY_G bit of the INT1_CTRL register to 1 and to the
INT2 pin by setting the INT2_DRDY_G bit of the INT2_CTRL register to 1.
The data-ready signal rises to 1 when a new set of data has been generated and it is available to be read. The
data-ready signal can be either latched or pulsed. If the DRDY_PULSED bit of the DRDY_PULSED_REG register
is set to 0 (default value), then the data-ready signal is latched and the interrupt is reset when the higher part
of one axis is read (registers 29h, 2Bh, 2Dh for the accelerometer; registers 23h, 25h, 27h for the gyroscope). If
the DRDY_PULSED bit of the DRDY_PULSED_REG register is set to 1, then the data-ready is pulsed and the
duration of the pulse observed on the interrupt pins is 75 µs. Pulsed mode is not applied to the XLDA and GDA
bits which are always latched.

Figure 4. Data-ready signal (DRDY_PULSED = 0)

DATA

DRDY

DATA READ

4.4 Using the block data update (BDU) feature
If reading the accelerometer/gyroscope data is not synchronized with either the XLDA/GDA bits in the
STATUS_REG register or with the DRDY signal driven to the INT1/INT2 pins, it is strongly recommended to
set the BDU (block data update) bit to 1 in the CTRL3_C register.
This feature avoids reading values (most significant and least significant parts of output data) related to different
samples. In particular, when the BDU is activated, the data registers related to each axis always contain the most
recent output data produced by the device, but, in case the read of a given pair (that is, OUTX_H_A(G) and
OUTX_L_A(G), OUTY_H_A(G) and OUTY_L_A(G), OUTZ_H_A(G) and OUTZ_L_A(G)) is initiated, the refresh
for that pair is blocked until both the MSB and LSB of the data are read.

Note: BDU only guarantees that the LSB and MSB have been sampled at the same moment. For example, if the
reading speed is too slow, X and Y can be read at T1 and Z sampled at T2.

AN5850
Using the data-ready signal

AN5850 - Rev 1 page 23/65

4.5 Understanding output data
The measured acceleration data are sent to the OUTX_H_A, OUTX_L_A, OUTY_H_A, OUTY_L_A, OUTZ_H_A,
and OUTZ_L_A registers. These registers contain, respectively, the most significant part and the least significant
part of the acceleration signals acting on the X, Y, and Z axes.
The measured angular rate data are sent to the OUTX_H_G, OUTX_L_G, OUTY_H_G, OUTY_L_G, OUTZ_H_G,
and OUTZ_L_G registers. These registers contain, respectively, the most significant part and the least significant
part of the angular rate signals acting on the X, Y, and Z axes.
The complete output data for the X, Y, Z axes is given by the concatenation OUTX_H_A(G) & OUTX_L_A(G),
OUTY_H_A(G) & OUTY_L_A(G), OUTZ_H_A(G) & OUTZ_L_A(G) and it is expressed as a two’s complement
number.
Both acceleration data and angular rate data are represented as 16-bit numbers. In order to translate them
to their corresponding physical representation, a sensitivity parameter must be applied. This sensitivity value
depends on the selected full-scale range (refer to the datasheet). In detail:
• Each acceleration sample must be multiplied by the proper sensitivity parameter LA_So (linear acceleration

sensitivity expressed in mg/LSB) in order to obtain the corresponding value in mg.
• Each angular rate sample must be multiplied by the proper sensitivity parameter G_So (angular rate

sensitivity expressed in mdps/LSB) in order to obtain the corresponding value in mdps.

4.5.1 Examples of output data
Table 15. Output data registers content vs. acceleration (FS_XL = ±2 g) provides a few basic examples of the
accelerometer data that is read in the data registers when the device is subject to a given acceleration.
Table 16. Output data registers content vs. angular rate (FS_G = ±250 dps) provides a few basic examples of the
gyroscope data that is read in the data registers when the device is subject to a given angular rate.
The values listed in the following tables are given under the hypothesis of perfect device calibration (that is, no
offset, no gain error, and so forth).

Table 15. Output data registers content vs. acceleration (FS_XL = ±2 g)

Acceleration values
Register address

OUTX_H_A (29h) OUTX_L_A (28h)

0 g 00h 00h

350 mg 16h 69h

1 g 40h 09h

-350 mg E9h 97h

-1 g BFh F7h

Table 16. Output data registers content vs. angular rate (FS_G = ±250 dps)

Angular rate values
Register address

OUTX_H_G (23h) OUTX_L_G (22h)

0 dps 00h 00h

100 dps 2Ch A4h

200 dps 59h 49h

-100 dps D3h 5Ch

-200 dps A6h B7h

AN5850
Understanding output data

AN5850 - Rev 1 page 24/65

5 Timestamp

Together with sensor data the device can provide timestamp information.

In order to enable this functionality, the TIMESTAMP_EN bit of the CTRL10_C register has to be set to 1.
The time step count is given by the concatenation of the TIMESTAMP3 & TIMESTAMP2 & TIMESTAMP1 &
TIMESTAMP0 registers and is represented as a 32-bit unsigned number.
The nominal timestamp resolution is 25 μs. It is possible to get the actual timestamp resolution value
through the FREQ_FINE[7:0] bits, representing a value as a 8-bit number in two's complement, of the
INTERNAL_FREQ_FINE register, which contains the difference in percentage of the actual ODR (and timestamp
rate) with respect to the nominal value.tactual s = 140000 ⋅ 1 + 0.0015 ⋅ FREQ_FINE
Similarly, it is possible to get the actual output data rate by using the following formula:ODRactual Hz = 6667 + 0.0015 ⋅ FREQ_FINE ⋅ 6667ODRcoeff
where the ODRcoeff values are indicated in the table below.

Table 17. ODRcoeff values

Selected ODR [Hz] ODRcoeff

12.5 512

26 256

52 128

104 64

208 32

416 16

833 8

1667 4

3333 2

6667 1

If both the accelerometer and the gyroscope are in power-down mode, the timestamp counter does not work and
the timestamp value is frozen at the last value.
When the maximum value 4294967295 LSB (equal to FFFFFFFFh) is reached corresponding to approximately 30
hours, the counter is automatically reset to 00000000h and continues to count. The timer count can be reset to
zero at any time by writing the reset value AAh in the TIMESTAMP2 register.
The TIMESTAMP_ENDCOUNT bit of the STATUS_REG goes high 6.4 ms before the occurrence of a timestamp
overrun condition. This flag is reset when the STATUS_REG register is read. It is also possible to route this signal
to the INT2 pin (75 μs duration pulse) by setting the INT2_TIMESTAMP bit of MD2_CFG to 1.

AN5850
Timestamp

AN5850 - Rev 1 page 25/65

6 Mode 2 - sensor hub mode

The hardware flexibility of the ISM330IS allows connecting the pins with different mode connections to external
sensors to expand functionalities such as adding a sensor hub. When sensor hub mode (mode 2) is enabled,
both the primary I²C/SPI (3- and 4-wire) slave interface and the I²C master interface for the connection of external
sensors are available. Mode 2 connection mode is described in detail in the following paragraphs.

6.1 Sensor hub mode description
In sensor hub mode (mode 2) up to four external sensors can be connected to the I²C master interface of the
device. The sensor hub trigger signal can be synchronized with the accelerometer/gyroscope data-ready signal
(up to 104 Hz). In this configuration, the sensor hub ODR can be configured through the SHUB_ODR_[1:0] bits of
the SLV0_CONFIG register. Alternatively, an external signal connected to the INT2 pin can be used as the sensor
hub trigger. In this second case, the maximum ODR supported for external sensors depends on the number of
read / write operations that can be executed between two consecutive trigger signals.
On the sensor hub trigger signal, all the write and read I²C operations configured through the registers
SLVx_ADD, SLVx_SUBADD, SLVx_CONFIG and DATAWRITE_SLV0 are performed sequentially from external
sensor 0 to external sensor 3 (depending on the external sensors enabled through the AUX_SENS_ON_[1:0] field
in the MASTER_CONFIG register).
If both the accelerometer and the gyroscope are in power-down mode, the sensor hub does not work.
All external sensors have to be connected in parallel to the MSDA/MSCL pins of the device, as illustrated in
Figure 5. External sensor connections in mode 2 for a single external sensor. External pull-up resistors and the
external trigger signal connection are optional and depend on the configuration of the registers.

Figure 5. External sensor connections in mode 2

Device Ext. sensor

MSDA

MSCL

INT2

SDA

SCL

Data-ready

I C MASTER I C SLAVE

External trigger is optional

R

Vdd_IO

 R

Vdd_IO

External pull-up is optional

2 2

AN5850
Mode 2 - sensor hub mode

AN5850 - Rev 1 page 26/65

6.2 Sensor hub mode registers
The sensor hub configuration registers and output registers are accessible when the bit SHUB_REG_ACCESS of
the FUNC_CFG_ACCESS register is set to 1. After setting the SHUB_REG_ACCESS bit to 1, only sensor hub
registers are available. In order to guarantee the correct register mapping for other operations, after the sensor
hub configuration or output data reading, the SHUB_REG_ACCESS bit of the FUNC_CFG_ACCESS register
must be set to 0.
The MASTER_CONFIG register has to be used for the configuration of the I²C master interface.
A set of registers SLVx_ADD, SLVx_SUBADD, SLVx_CONFIG is dedicated to the configuration of the 4 slave
interfaces associated to the 4 connectable external sensors. An additional register, DATAWRITE_SLV0, is
associated to slave #0 only. It has to be used to implement the write operations.
Finally, 18 registers (from SENSOR_HUB_1 to SENSOR_HUB_18) are available to store the data read from the
external sensors.

6.2.1 MASTER_CONFIG (14h)
This register is used to configure the I²C master interface.

Table 18. MASTER_CONFIG register

b7 b6 b5 b4 b3 b2 b1 b0

RST_MASTER
_REGS

WRITE_
ONCE

START_
CONFIG

PASS_THROUGH
_MODE

SHUB_
PU_EN MASTER_ON AUX_

SENS_ON_1
AUX_

SENS_ON_0

• RST_MASTER_REGS bit is used to reset the I²C master interface, configuration and output registers. It
must be manually asserted and de-asserted.

• WRITE_ONCE bit is used to limit the write operations on slave 0 to only one occurrence (avoiding to repeat
the same write operation multiple times). If this bit is not asserted, a write operation is triggered at each
ODR.

Note: The WRITE_ONCE bit must be set to 1 if slave 0 is used for read transactions.
• START_CONFIG bit selects the sensor hub trigger signal.

– When this bit is set to 0, the accelerometer/gyroscope sensor has to be active (not in power-down
mode) and the sensor hub trigger signal is the accelerometer/gyroscope data-ready signal, with a
frequency defined by the SHUB_ODR_[1:0] bits of the SLV0_CONFIG register (up to 104 Hz).

– When this bit is set to 1, at least one sensor between the accelerometer and the gyroscope has to
be active and the sensor hub trigger signal is the INT2 pin. In fact, when both the MASTER_ON bit
and START_CONFIG bit are set to 1, the INT2 pin is configured as an input signal. In this case, the
INT2 pin has to be connected to the data-ready pin of the external sensor (Figure 5. External sensor
connections in mode 2) in order to trigger the read/write operations on the external sensor registers.
Sensor hub interrupt from INT2 is ‘high-level triggered’ (not programmable).

Note: In case of external trigger signal usage (START_CONFIG = 1), if the INT2 pin is connected to the data-ready pin
of the external sensor (Figure 5. External sensor connections in mode 2) and the latter is in power-down mode,
then no data-ready signal can be generated by the external sensor. For this reason, the initial configuration of
the external sensor register has to be performed using the internal trigger signal (START_CONFIG = 0). After
the external sensor is activated and the data-ready signal is available, the external trigger signal can be used by
switching the START_CONFIG bit to 1.
• PASS_THROUGH_MODE bit is used to enable/disable the I²C interface pass-through. When this bit is set

to 1, the main I²C line (for example, connected to an external microcontroller) is short-circuited with the
auxiliary one, in order to implement a direct access to the external sensor registers. See Section 6.3 Sensor
hub pass-through feature for details.

• SHUB_PU_EN bit enables/disables the internal pull-up on the I²C master line. When this bit is set to 0,
the internal pull-up is disabled and the external pull-up resistors on the MSDA/MSCL pins are required, as
shown in Figure 5. External sensor connections in mode 2. When this bit is set to 1, the internal pull-up is
enabled (regardless of the configuration of the MASTER_ON bit) and the external pull-up resistors on the
MSDA/MSCL pins are not required.

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 27/65

• MASTER_ON bit has to be set to 1 to enable the auxiliary I²C master of the device (sensor hub mode). In
order to change the sensor hub configuration at runtime or when setting the accelerometer and gyroscope
sensor in power-down mode, or when applying the software reset procedure, the I²C master must be
disabled, followed by a 300 µs delay. The following procedure must be implemented:

1. Turn off I²C master by setting MASTER_ON = 0
2. Wait 300 µs
3. Change the configuration of the sensor hub registers or set the accelerometer/gyroscope in power-down

mode or apply the software reset procedure
• AUX_SENS_ON_[1:0] bits have to be set accordingly to the number of slaves to be used. I²C transactions

are performed sequentially from slave 0 to slave 3. The possible values are:
– 00: one slave
– 01: two slaves
– 10: three slaves
– 11: four slaves

6.2.2 STATUS_MASTER (22h)
The STATUS_MASTER register, similarly to the other sensor hub configurations and output registers, can
be read only after setting the SHUB_REG_ACCESS bit of the FUNC_CFG_ACCESS register to 1. The
STATUS_MASTER register is also mapped to the STATUS_MASTER_MAINPAGE register, which can be directly
read without enabling access to the sensor hub registers.

Table 19. STATUS_MASTER / STATUS_MASTER_MAINPAGE register

b7 b6 b5 b4 b3 b2 b1 b0

WR_ONCE
_DONE

SLAVE3_
NACK

SLAVE2_
NACK

SLAVE1_
NACK

SLAVE0_
NACK 0 0 SENS_HUB

_ENDOP

• WR_ONCE_DONE bit is set to 1 after a write operation performed with the WRITE_ONCE bit configured to
1 in the MASTER_CONFIG register. This bit can be polled in order to check if the single write transaction
has been completed.

• SLAVEx_NACK bits are set to 1 if a “not acknowledge” event happens during the communication with the
corresponding slave x.

• SENS_HUB_ENDOP bit reports the status of the I²C master. During the idle state of the I²C master,
this bit is equal to 1; it goes to 0 during I²C master read/write operations. When a sensor hub routine
is completed, this bit automatically goes to 1 and the external sensor data are available to be read
from the SENSOR_HUB_x registers (depending on the configuration of the SLVx_ADD, SLVx_SUBADD,
SLVx_CONFIG registers). Information about the status of the I²C master can be driven to the INT1
interrupt pin by setting the INT1_SHUB bit of the MD1_CFG register to 1. This signal goes high
on a rising edge of the SENS_HUB_ENDOP signal and it is cleared only if the STATUS_MASTER /
STATUS_MASTER_MAINPAGE register is read.

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 28/65

6.2.3 SLV0_ADD (15h), SLV0_SUBADD (16h), SLV0_CONFIG (17h)
The sensor hub registers used to configure the I²C slave interface associated to the first external sensor are
described hereafter.

Table 20. SLV0_ADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave0_add6 slave0_add5 slave0_add4 slave0_add3 slave0_add2 slave0_add1 slave0_add0 rw_0

• slave0_add[6:0] bits are used to indicate the I²C slave address of the first external sensor.
• rw_0 bit configures the read/write operation to be performed on the first external sensor (0: write operation;

1: read operation). The read/write operation is executed when the next sensor hub trigger event occurs.

Table 21. SLV0_SUBADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave0_reg7 slave0_reg6 slave0_reg5 slave0_reg4 slave0_reg3 slave0_reg2 slave0_reg1 slave0_reg0

• slave0_reg[7:0] bits are used to indicate the address of the register of the first external sensor to be written
(if the rw_0 bit of the SLV0_ADD register is set to 0) or the address of the first register to be read (if the rw_0
bit is set to 1).

Table 22. SLV0_CONFIG register

b7 b6 b5 b4 b3 b2 b1 b0

SHUB_
ODR_1

SHUB_
ODR_0 0 0 0 Slave0

_numop2
Slave0

_numop1
Slave0

_numop0

• SHUB_ODR_[1:0] bits are used to configure the sensor hub output data rate when using internal trigger
(accelerometer/gyroscope data-ready signals). The sensor hub output data rate can be configured to four
possible values, limited by the ODR of the accelerometer and gyroscope sensors:
– 00: 104 Hz
– 01: 52 Hz
– 10: 26 Hz
– 11: 12.5 Hz

The maximum allowed value for the SHUB_ODR_[1:0] bits corresponds to the maximum ODR between the
accelerometer and gyroscope sensors.
• Slave0_numop[2:0] bits define the number of consecutive read operations to be performed on the first

external sensor starting from the register address indicated in the SLV0_SUBADD register.

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 29/65

6.2.4 SLV1_ADD (18h), SLV1_SUBADD (19h), SLV1_CONFIG (1Ah)
The sensor hub registers used to configure the I²C slave interface associated to the second external sensor are
described hereafter.

Table 23. SLV1_ADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave1_add6 slave1_add5 slave1_add4 slave1_add3 slave1_add2 slave1_add1 slave1_add0 r_1

• slave1_add[6:0] bits are used to indicate the I²C slave address of the second external sensor.
• r_1 bit enables/disables the read operation to be performed on the second external sensor (0: read

operation disabled; 1: read operation enabled). The read operation is executed when the next sensor hub
trigger event occurs.

Table 24. SLV1_SUBADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave1_reg7 slave1_reg6 slave1_reg5 slave1_reg4 slave1_reg3 slave1_reg2 slave1_reg1 slave1_reg0

• Slave1_reg[7:0] bits are used to indicate the address of the register of the second external sensor to be read
when the r_1 bit of SLV1_ADD register is set to 1.

Table 25. SLV1_CONFIG register

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 Slave1
_numop2

Slave1
_numop1

Slave1
_numop0

• Slave1_numop[2:0] bits define the number of consecutive read operations to be performed on the second
external sensor starting from the register address indicated in the SLV1_SUBADD register.

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 30/65

6.2.5 SLV2_ADD (1Bh), SLV2_SUBADD (1Ch), SLV2_CONFIG (1Dh)
The sensor hub registers used to configure the I²C slave interface associated to the third external sensor are
described hereafter.

Table 26. SLV2_ADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave2_add6 slave2_add5 slave2_add4 slave2_add3 slave2_add2 slave2_add1 slave2_add0 r_2

• Slave2_add[6:0] bits are used to indicate the I²C slave address of the third external sensor.
• r_2 bit enables/disables the read operation to be performed on the third external sensor (0: read operation

disabled; 1: read operation enabled). The read operation is executed when the next sensor hub trigger event
occurs.

Table 27. SLV2_SUBADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave2_reg7 slave2_reg6 slave2_reg5 slave2_reg4 slave2_reg3 slave2_reg2 slave2_reg1 slave2_reg0

• Slave2_reg[7:0] bits are used to indicate the address of the register of the third external sensor to be read
when the r_2 bit of the SLV2_ADD register is set to 1.

Table 28. SLV2_CONFIG register

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 Slave2
_numop2

Slave2
_numop1

Slave2
_numop0

• Slave2_numop[2:0] bits define the number of consecutive read operations to be performed on the third
external sensor starting from the register address indicated in the SLV2_SUBADD register.

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 31/65

6.2.6 SLV3_ADD (1Eh), SLV3_SUBADD (1Fh), SLV3_CONFIG (20h)
The sensor hub registers used to configure the I²C slave interface associated to the fourth external sensor are
described hereafter.

Table 29. SLV3_ADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave3_add6 slave3_add5 slave3_add4 slave3_add3 slave3_add2 slave3_add1 slave3_add0 r_3

• Slave3_add[6:0] bits are used to indicate the I²C slave address of the fourth external sensor.
• r_3 bit enables/disables the read operation to be performed on the fourth external sensor (0: read operation

disabled; 1: read operation enabled). The read operation is executed when the next sensor hub trigger event
occurs.

Table 30. SLV3_SUBADD register

b7 b6 b5 b4 b3 b2 b1 b0

slave3_reg7 slave3_reg6 slave3_reg5 slave3_reg4 slave3_reg3 slave3_reg2 slave3_reg1 slave3_reg0

• Slave3_reg[7:0] bits are used to indicate the address of the register of the fourth external sensor to be read
when the r_3 bit of the SLV3_ADD register is set to 1.

Table 31. SLV3_CONFIG register

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 Slave3
_numop2

Slave3
_numop1

Slave3
_numop0

• Slave3_numop[2:0] bits define the number of consecutive read operations to be performed on the fourth
external sensor starting from the register address indicated in the SLV3_SUBADD register.

6.2.7 DATAWRITE_SLV0 (21h)

Table 32. DATAWRITE_SLV0 register

b7 b6 b5 b4 b3 b2 b1 b0

Slave0_
dataw7

Slave0_
dataw6

Slave0_
dataw5

Slave0_
dataw4

Slave0_
dataw3

Slave0_
dataw2

Slave0_
dataw1

Slave0_
dataw0

• Slave0_dataw[7:0] bits are dedicated, when the rw_0 bit of SLV0_ADD register is set to 0 (write operation),
to indicate the data to be written to the first external sensor at the address specified in the SLV0_SUBADD
register.

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 32/65

6.2.8 SENSOR_HUB_x registers
Once the auxiliary I²C master is enabled, for each of the external sensors, it reads a number of registers equal
to the value of the Slavex_numop (x = 0, 1, 2, 3) field, starting from the register address specified in the
SLVx_SUBADD (x = 0, 1, 2, 3) register. The number of external sensors to be managed is specified in the
AUX_SENS_ON_[1:0] bits of the MASTER_CONFIG register.
Read data are consecutively stored (in the same order they are read) in the device registers starting from the
SENSOR_HUB_1 register, as in the example in Figure 6. SENSOR_HUB_x allocation example; 18 registers, from
SENSOR_HUB_1 to SENSOR_HUB_18, are available to store the data read from the external sensors.

Figure 6. SENSOR_HUB_x allocation example

SLV0_SUBADD (16h) = 28h
SLV0_CONFIG (17h) – Slave0_numop[2:0] = 3 Sensor #1

SLV1_SUBADD (19h) = 00h
SLV1_CONFIG (1Ah) – Slave1_numop[2:0] = 6 Sensor #2

SLV2_SUBADD (1Ch) = 20h
SLV2_CONFIG (1Dh) – Slave2_numop[2:0] = 4 Sensor #3

SLV3_SUBADD (1Fh) = 40h
SLV3_CONFIG (20h) – Slave3_numop[2:0] = 5 Sensor #4

SENSOR_HUB_1
SENSOR_HUB_2
SENSOR_HUB_3
SENSOR_HUB_4
SENSOR_HUB_5
SENSOR_HUB_6
SENSOR_HUB_7
SENSOR_HUB_8
SENSOR_HUB_9
SENSOR_HUB_10
SENSOR_HUB_11
SENSOR_HUB_12
SENSOR_HUB_13
SENSOR_HUB_14
SENSOR_HUB_15
SENSOR_HUB_16
SENSOR_HUB_17
SENSOR_HUB_18

Sensor #1
Value of reg 28h
Value of reg 29h
Value of reg 2Ah
Value of reg 00h
Value of reg 01h
Value of reg 02h
Value of reg 03h
Value of reg 04h
Value of reg 05h
Value of reg 20h
Value of reg 21h
Value of reg 22h
Value of reg 23h
Value of reg 40h
Value of reg 41h
Value of reg 42h
Value of reg 43h
Value of reg 44h

Sensor #2

Sensor #4

Sensor #3

AN5850
Sensor hub mode registers

AN5850 - Rev 1 page 33/65

6.3 Sensor hub pass-through feature
The PASS_THROUGH_MODE bit of the MASTER_CONFIG register is used to enable/disable the I²C interface
pass-through. When it is set to 1, the main I²C line (for example, connected to an external microcontroller) is
short-circuited with the auxiliary one in order to implement a direct access to the external sensor registers. The
pass-through feature for an external device configuration can be used only if the I²C protocol is used on the
primary interface. This feature can be used to configure the external sensors.

Figure 7. Pass-through feature

DEVICE

MSDA

MSCL

Ext. sensor

SDA

SCL
R

Vdd_IO

R

Vdd_IO

SDA

SCL

PASS_THROUGH_MODE bit

R

Vdd_IO

R

Vdd_IOMCU

SDA

SCL

The following procedure can be implemented to enable pass-through mode:
1. If the I²C master is enabled (MASTER_ON = 1), turn it off (set the MASTER_ON bit to 0) and wait 300 μs.
2. If the pull-up on the I²C master line is enabled, disable it (set the SHUB_PU_EN bit of the

MASTER_CONFIG register to 0).
3. Enable pass-through mode by setting the PASS_THROUGH_MODE bit to 1.

AN5850
Sensor hub pass-through feature

AN5850 - Rev 1 page 34/65

6.4 Sensor hub mode example
The configuration of the external sensors can be performed using the pass-through feature. This feature can be
enabled by setting the PASS_THROUGH_MODE bit of the MASTER_CONFIG register to 1 and implements a
direct access to the external sensor registers, allowing quick configuration.
The code provided below gives basic routines to configure a device in sensor hub mode. Three different snippets
of code are provided here, in order to present how to easily perform a one-shot write or read operation, using
slave 0, and how to set up slave 0 for continuously reading external sensor data.
The PASS_THROUGH_MODE bit is disabled in all these routines, in order to be as generic as possible.
The one-shot read routine (using internal trigger) is described below. For simplicity, the routine uses the
accelerometer configured at 104 Hz, without external pull-ups on the I²C auxiliary bus.

1. Write 40h to FUNC_CFG_ACCESS // Enable access to sensor hub registers

2. Write EXT_SENS_ADDR | 01h to SLV0_ADD // Configure external device address (EXT_SENS_ADDR)

// Enable read operation (rw_0 = 1)

3. Write REG to SLV0_SUBADD // Configure address (REG) of the register to be read

4. Write 01h to SLV0_CONFIG // Read one byte, SHUB_ODR = 104 Hz

5. Write 4Ch to MASTER_CONFIG // WRITE_ONCE is mandatory for read

// I²C master enabled, using slave 0 only

// I²C pull-ups enabled on MSDA and MSCL

6. Write 00h to FUNC_CFG_ACCESS // Disable access to sensor hub registers

7. Read OUTX_H_A register // Clear accelerometer data-ready XLDA

8. Poll STATUS_REG, until XLDA = 1 // Wait for sensor hub trigger

9. Poll STATUS_MASTER_MAINPAGE,

until SENS_HUB_ENDOP = 1

// Wait for sensor hub read transaction

10. Write 40h to FUNC_CFG_ACCESS // Enable access to sensor hub registers

11. Write 08h to MASTER_CONFIG // I²C master disable

12. Wait 300 µs

13. Read SENSOR_HUB_1 register // Retrieve the output of the read operation

14. Write 00h to FUNC_CFG_ACCESS // Disable access to sensor hub registers

The one-shot routine can be easily changed to setup the device for continuous reading of external sensor data:

1. Write 40h to FUNC_CFG_ACCESS // Enable access to sensor hub registers

2. Write EXT_SENS_ADDR | 01h to SLV0_ADD // Configure external device address (EXT_SENS_ADDR)

// Enable read operation (rw_0 = 1)

3. Write REG to SLV0_SUBADD // Configure address (REG) of the register to be read

4. Write 0xh to SLV0_CONFIG // Read x bytes (up to six), SHUB_ODR = 104 Hz

5. Write 4Ch to MASTER_CONFIG // WRITE_ONCE is mandatory for read

// I²C master enabled, using slave 0 only

// I²C pull-ups enabled on MSDA and MSCL

6. Write 00h to FUNC_CFG_ACCESS // Disable access to sensor hub registers

After the execution of step 6, external sensor data are available to be read in sensor hub output registers.

AN5850
Sensor hub mode example

AN5850 - Rev 1 page 35/65

The one-shot write routine (using internal trigger) is described below. For simplicity, the routine uses the
accelerometer configured at 104 Hz, without external pull-ups on the I²C auxiliary bus.

1. Write 40h to FUNC_CFG_ACCESS // Enable access to sensor hub registers

2. Write EXT_SENS_ADDR to SLV0_ADD // Configure external device address (EXT_SENS_ADDR)

// Enable write operation (rw_0 = 0)

3. Write REG to SLV0_SUBADD // Configure address (REG) of the register to be written

4. Write 00h to SLV0_CONFIG // SHUB_ODR = 104 Hz

5. Write VAL to DATAWRITE_SLV0 // Configure value (VAL) to be written in REG

6. Write 4Ch to MASTER_CONFIG // WRITE_ONCE enabled for single write

// I²C master enabled, using slave 0 only

// I²C pull-ups enabled on MSDA and MSCL

7. Poll STATUS_MASTER,

until WR_ONCE_DONE = 1

// Wait for sensor hub write transaction

8. Write 08h to MASTER_CONFIG // I²C master disabled

9. Wait 300 µs

10. Write 00h to FUNC_CFG_ACCESS // Disable access to sensor hub registers

The following sequence configures the LIS2MDL external magnetometer sensor (refer to its datasheet for
additional details) in continuous-conversion mode at 100 Hz (enabling temperature compensation, BDU and offset
cancellation features) and reads the magnetometer output registers, saving their values in the SENSOR_HUB_1
to SENSOR_HUB_6 registers.

1. Write 40h to CTRL1_XL // Turn on the accelerometer (for trigger signal) at 104 Hz

2. Perform one-shot read with

SLV0_ADD = 3Dh

SLV0_SUBADD = 4Fh

// Check LIS2MDL WHO_AM_I register

// LIS2MDL slave address is 3Ch and rw_0=1

// WHO_AM_I register address is 4Fh

3. Perform one-shot write with

SLV0_ADD = 3Ch

SLV0_SUBADD = 60h

DATAWRITE_SLV0 = 8Ch

// Write LIS2MDL register CFG_REG_A (60h) = 8Ch

// LIS2MDL slave address is 3Ch and rw_0=0

// Enable temperature compensation

// Enable magnetometer at 100 Hz ODR in continuous mode

4. Perform one-shot write with

SLV0_ADD = 3Ch

SLV0_SUBADD = 61h

DATAWRITE_SLV0 = 02h

// Write LIS2MDL register CFG_REG_B (61h) = 02h

// LIS2MDL slave address is 3Ch and rw_0=0

// Enable magnetometer offset-cancellation

5. Perform one-shot write with

SLV0_ADD = 3Ch

SLV0_SUBADD = 62h

DATAWRITE_SLV0 = 10h

// Write LIS2MDL register CFG_REG_B (62h) = 10h

// LIS2MDL slave address is 3Ch and rw_0=0

// Enable magnetometer BDU

6. Set up continuous read with

SLV0_ADD = 3Dh

SLV0_SUBADD = 68h

SLV0_CONFIG = 06h

// LIS2MDL slave address is 3Ch and rw_0=1

// Magnetometer output registers start from 68h

// Set up a continuous 6-byte read from I²C master interface

AN5850
Sensor hub mode example

AN5850 - Rev 1 page 36/65

7 Temperature sensor

The ISM330IS is provided with an internal temperature sensor that is suitable for ambient temperature
measurement.
If both the accelerometer and the gyroscope sensors are in power-down mode, the temperature sensor is off.
The maximum output data rate of the temperature sensor is 52 Hz and its value depends on how the
accelerometer and gyroscope sensors are configured:
• If the gyroscope is in power-down mode:

– If the accelerometer is configured in low-power mode and its ODR is lower than 52 Hz, the temperature
data rate is equal to the configured accelerometer ODR.

– The temperature data rate is equal to 52 Hz for all other accelerometer configurations.
• If the gyroscope is not in power-down mode, the temperature data rate is equal to 52 Hz, regardless of the

accelerometer and gyroscope configuration.
For the temperature sensor, the data-ready signal is represented by the TDA bit of the STATUS_REG register.
The signal can be driven to the INT2 pin by setting the INT2_DRDY_TEMP bit of the INT2_CTRL register to 1.
The temperature data is given by the concatenation of the OUT_TEMP_H and OUT_TEMP_L registers and it is
represented as a number of 16 bits in two’s complement format with a sensitivity of 256 LSB/°C. The output zero
level corresponds to 25 °C.

7.1 Example of temperature data calculation
Table 33. Output data registers content vs. temperature provides a few basic examples of the data that is read
from the temperature data registers at different ambient temperature values. The values listed in this table are
given under the hypothesis of perfect device calibration (that is, no offset, no gain error, and so forth).

Table 33. Output data registers content vs. temperature

Temperature values

Register address

OUT_TEMP_H

(21h)

OUT_TEMP_L

(20h)

0°C E7h 00h

25°C 00h 00h

50°C 19h 00h

AN5850
Temperature sensor

AN5850 - Rev 1 page 37/65

8 Self-test

The embedded self-test functions allow checking the device functionality without moving it.

8.1 Accelerometer self-test
When the accelerometer self-test is enabled, an actuation force is applied to the sensor, simulating a definite input
acceleration. In this case, the sensor outputs exhibit a change in their DC levels which are related to the selected
full scale through the sensitivity value.
The accelerometer self-test function is off when the ST[1:0] _XL bits of the CTRL5_C register are programmed to
00. It is enabled when the ST[1:0]_XL bits are set to 01 (positive sign self-test) or 10 (negative sign self-test).
When the accelerometer self-test is activated, the sensor output level is given by the algebraic sum of the signals
produced by the acceleration acting on the sensor and by the electrostatic test-force.
The complete accelerometer self-test procedure is indicated in Figure 8. Accelerometer self-test procedure.

AN5850
Self-test

AN5850 - Rev 1 page 38/65

Figure 8. Accelerometer self-test procedure

Power up, wait 100 ms for stable output

Check XLDA in STATUS_REG (1Eh) – accelerometer data-ready bit
Reading OUTX_A/OUTY_A/OUTZ_A clears XLDA, Wait for the first sample

Read OUTX_A (28h/29h), OUTY_A (2Ah/2Bh), OUTZ_A (2Ch/2Dh)

 Discard data

Check XLDA in STATUS_REG (1Eh) – accelerometer data-ready bit
Reading OUTX_A/OUTY_A/OUTZ_A clears XLDA, Wait for the first sample

Read OUTX_A (28h/29h), OUTY_A (2Ah/2Bh), OUTZ_A (2Ch/2Dh)

 Discard data

YES (PASS) NO (FAIL)

Write 00h to CTRL5_C (14h): Disable self-test

Write 00h to CTRL1_XL (10h): Disable sensor

For 5 times, after checking the XLDA bit, read the output registers

Read OUTX_L_A (28h), OUTX_H_A (29h): Store data in OUTX_NOST

Read OUTY_L_A (2Ah), OUTY_H_A (2Bh): Store data in OUTY_NOST

Read OUTZ_L_A (2Ch), OUTZ_H_A (2Dh): Store data in OUTZ_NOST

The 16 -bit data is expressed in two’s complement.

Average the stored data on each axis

Write 01h to CTRL5_C (14h)Enable accelerometer self -test

Wait 100 ms for stable output

|Min(ST_X)| |OUTX_ST- OUTX_NOST|

AND

|Min(ST_Y)| |OUTY_ST- OUTY_NOST|

AND

|Min(ST_Z)| |OUTZ_ST- OUTZ_NOST| |Max(ST_Z)|

For 5 times, after checking the XLDA bit, read the output registers

Read OUTX_L_A (28h), OUTX_H_A (29h): Store data in OUTX_ST

Read OUTY_L_A (2Ah), OUTY_H_A (2Bh): Store data in OUTY_ST

Read OUTZ_L_A (2Ch), OUTZ_H_A (2Dh): Store data in OUTZ_ST

The 16-bit data is expressed in two’s complement.

Average the stored data on each axis

Write 38h to CTRL1_XL (10h)
Write 00h to CTRL2_G (11h)
Write 44h to CTRL3_C (12h)
Write 00h to CTRL4_C (13h)
Write 00h to CTRL5_C (14h)
Write 00h to CTRL6_C (15h)
Write 00h to CTRL7_G (16h)
Write 00h to CTRL9_C (18h)
Write 00h to CTRL10_C (19h)

 Initialize and turn on sensor
 Set BDU = 1, FS = ±4 g, ODR = 52 Hz

Note: Keep the device still during the self-test procedure.

≤ ≤

≤≤

≤ ≤

|Max(ST_Y)|

|Max(ST_X)|

A
N

5850 - R
ev 1

page 39/65

A
N

5850

8.2 Gyroscope self-test
The gyroscope self-test allows testing the mechanical and electrical parts of the gyroscope sensor: when it is
activated, an actuation force is applied to the sensor, emulating a definite Coriolis force and the seismic mass is
moved by means of this electrostatic test-force. In this case, the sensor output exhibits an output change.
The gyroscope self-test function is off when the ST[1:0]_G bits of the CTRL5_C register are programmed to 00. It
is enabled when the ST[1:0]_G bits are set to 01 (positive sign self-test) or 11 (negative sign self-test).
When the gyroscope self-test is active, the sensor output level is given by the algebraic sum of the signals
produced by the angular rate acting on the sensor and by the electrostatic test-force.
The complete gyroscope self-test procedure is indicated in Figure 9. Gyroscope self-test procedure.

AN5850
Gyroscope self-test

AN5850 - Rev 1 page 40/65

Figure 9. Gyroscope self-test procedure

Power up, wait 100 ms for stable output

Check GDA in STATUS_REG (1Eh) – gyroscope data-ready bit
Reading OUTX_G/OUTY_G/OUTZ_G clears GDA, wait for the first sample

Read OUTX_G(22h/23h), OUTY_G(24h/25h), OUTZ_G(26h/27h)

Discard data

Check GDA in STATUS_REG (1Eh) – gyroscope data-ready bit
Reading OUTX/OUTY/OUTZ clears GDA, wait for the first sample

Read OUTX_G(22h/23h), OUTY_G(24h/25h), OUTZ_G(26h/27h)
Discard data

YES (PASS) NO (FAIL)

Write 00h to CTRL5_C (14h): Disable self-test

Write 00h to CTRL2_G (11h): Disable sensor

Write 00h to CTRL1_XL (10h)
Write 5Ch to CTRL2_G (11h)
Write 44h to CTRL3_C (12h)
Write 00h to CTRL4_C (13h)
Write 00h to CTRL5_C (14h)
Write 00h to CTRL6_C (15h)
Write 00h to CTRL7_G (16h)
Write 00h to CTRL9_C (18h)
Write 00h to CTRL10_C (19h)

 Initialize and turn on sensor
 Set BDU = 1, ODR = 208 Hz, FS = ±2000 dps

For 5 times, after checking the GDA bit, read the output registers

Read OUTX_L_G(22h), OUTX_H_G(23h): Store data in OUTX_NOST

Read OUTY_L_G(24h), OUTY_H_G(25h): Store data in OUTY_NOST

Read OUTZ_L_G(26h), OUTZ_H_G(27h): Store data in OUTZ_NOST

The 16-bit data is expressed in two’s complement.

Average the stored data on each axis

Write 04h to CTRL5_C (14h) Enable the gyroscope self-test

Wait 100 ms

|Min(ST_X)| |OUTX_ST- OUTX_NOST|

AND

|Min(ST_Y)| |OUTY_ST- OUTY_NOST|

AND

|Min(ST_Z)| |OUTZ_ST- OUTZ_NOST|

For 5 times, after checking the GDA bit, read the output registers

The 16-bit data is expressed in two’s complement.

Average the stored data on each axis

Note: Keep the device still during the self-test procedure.

Read OUTX_L_G(22h), OUTX_H_G(23h): Store data in OUTX_NOST

Read OUTY_L_G(24h), OUTY_H_G(25h): Store data in OUTY_NOST

Read OUTZ_L_G(26h), OUTZ_H_G(27h): Store data in OUTZ_NOST

≤ ≤

≤

≤

≤

≤

|Max(ST_Y)|

|Max(ST_Z)|

|Max(ST_X)|

A
N

5850 - R
ev 1

page 41/65

A
N

5850

9 ISPU

The ISPU (intelligent sensor processing unit) is an embedded programmable core that allows reading sensor
data and processing it inside the ISM330IS device and can directly provide, when necessary, the results of said
processing to an external microcontroller. The ISPU can run any type of processing, from basic signal processing
to artificial intelligence algorithms.
The ISPU in the ISM330IS device is based on the STRED architecture, a proprietary architecture developed by
STMicroelectronics, targeting extremely low power consumption and a small silicon area.
The ISPU is based on a 32-bit RISC Harvard architecture and features a minimal floating-point unit (FPU) to
accelerate single precision floating-point operations (multiplication, addition, and subtraction). The complete ISPU
instruction set is available in Table 38 of Appendix A.
The ISPU is supported by two separate RAMs:
1. 32 KB for code and read-only data
2. 8 KB for variable data
Note that the device does not have any on-board nonvolatile memory to store the program, which means that the
program must be reloaded to the device RAM each time power to the device is removed and reapplied.
Note also that the 32 KB RAM is writable from the device interface (I²C or SPI) to load the program, but it is not
writable by the ISPU and, as a consequence, cannot be used for storing variable data. The 8 KB RAM instead is
writable both from the device interface and by the ISPU.
The ISPU is able to interact both with the sensor via a set of internal registers and with an external microcontroller
by communicating through a set of registers accessible both by the ISPU and the external microcontroller over the
device interface.

Figure 10. Sensor with ISPU core

External
Microcontroller

SPI / I2C bus

Sensor
ISPU input data from sensor
• Accelerometer (ISPU_ARAW) - 6 bytes
• Gyroscope (ISPU_GRAW) - 6 bytes
• Temperature (ISPU_TEMP) - 2 bytes
• External sensor (ISPU_ERAW) - 6 bytes

ISPU
Algo 29

…

ISPU output data registers (ISPU_DOUT)
• 32x 16-bit registers (64 bytes)
• Used to share algorithm results

ISPU configuration registers (ISPU_DUMMY_CFG)
• 4x 16-bit registers (8 bytes)
• Used to pass data to the ISPU

ISPU to IF flags registers (ISPU_S2IF_FLAG)
• 1x 16-bit register (2 bytes) for ISPU to IF signals
• Used to send signals to IF

IF to ISPU flags registers (ISPU_IF2S_FLAG)
• 1x 16-bit register (2 bytes) for IF to ISPU signals
• Used to send signals to ISPU

Sensor hub IMU
sensing chain

I2C bus
External
Sensor

Interrupt generation

Algo 28

Algo 00

AN5850
ISPU

AN5850 - Rev 1 page 42/65

The ISPU is designed to be normally in a sleep state, where the clock is disabled. When new data is generated
by the sensor, the ISPU is woken up and the new data sample can be processed. As shown in Figure 10, the
ISPU can access all the sensor data generated by the device itself (accelerometer, gyroscope, temperature) and
the data read from an external sensor through the I²C master interface (see Section 6 Mode 2 - sensor hub
mode). The ISPU can also access data written by an external microcontroller in dedicated registers. This data
may represent configuration values needed by the processing logic or flags set to request an action to the ISPU.
Using all this input data, the ISPU can run up to 30 algorithms and, once the data sample has been processed, it
can write the results in the general-purpose output registers, that the external microcontroller can read to retrieve
the needed information. The ISPU can also generate interrupt signals on the INT1 and INT2 pins of the device in
order to signal to the external microcontroller that there is new relevant data to be read from the output registers
or even directly signal the detection of a specific event without the need to read any output data. By using the
interrupts, it is possible to keep the external microcontroller in a sleep state for most of the time in order to
drastically reduce the power consumption of the system. Once the ISPU has finished all processing for the current
data sample and has updated the relevant output registers, then it can be put again in the sleep state to avoid
consuming power while waiting for the next data sample.
The ISPU program can be written in standard C code, which allows for high flexibility and reuse of code written
for other architectures. It is nonetheless recommended to implement appropriate optimizations for the ISPU
architecture if the performance of the processing logic is insufficient to keep up with the sensor data rate or to
further reduce power consumption. For example, operations that are not hardware accelerated, like floating-point
division, should be avoided as much as possible.
A toolchain is provided on the STMicroelectronics website (ISPU-Toolchain), containing tools for the compilation
of the code (based on GNU GCC) and the conversion of binary files into a format suitable to be loaded into
the device. Additionally, templates and examples that can be used to quickly start programming the ISPU are
available in the X-CUBE-ISPU STM32Cube expansion package.

Note: Support for some of the functions described in this document (for example, processing cycle, algorithm
management, interrupt handling) is already available in the ISPU code of the templates and examples.
This document does not describe how to use the software tools mentioned above, but describes every
functionality related to the ISPU at the device level.

AN5850
ISPU

AN5850 - Rev 1 page 43/65

http://www.st.com/content/st_com/en/products/development-tools/software-development-tools/sensor-software-development-tools/ispu-toolchain.html

9.1 Processing cycle and rate configuration
As already introduced, the ISPU is designed for sample-by-sample processing in a cycle:
1. The ISPU is woken up by an internal signal generated by the sensor when new data (from the accelerometer

or the gyroscope, not from the external sensor) is available.
2. The code to process the sample is executed.
3. The ISPU is put back to sleep until the next sample is available.

Note: Processing must be completed before the next sample is ready and the signal that triggers the ISPU to wake
up is generated. If this condition is not met, it results in one or more missed samples that are not processed by
the implemented logic. Refer to Section 9.9 Interrupts for a method to monitor the execution time of the ISPU
processing.
The rate at which the ISPU is triggered is configurable and depends on three settings:
• Accelerometer output data rate, configurable by setting the ODR_XL[3:0] field in the CTRL1_XL register.

Refer to Table 7 for the available rates.
• Gyroscope output data rate, configurable by setting the ODR_G[3:0] field in the CTRL2_G register. Refer to

Table 8 for the available rates.
• ISPU IRQ rate, configurable by setting the ISPU_RATE_[3:0] field in the CTRL9_C register. Refer to

Table 34 for the available rates.
Normally, the ISPU IRQ rate represents the rate at which the ISPU is triggered. However, if the accelerometer
and gyroscope output data rates are both lower than the ISPU IRQ rate, the rate at which the ISPU is triggered
is limited to the faster rate between the accelerometer and gyroscope output data rates. This is due to the fact
that the ISPU is triggered by new data samples available from the sensors. The actual ISPU rate can be obtained
using the following equation:

ISPU_ACTUAL_RATE = min(max(ODR_XL, ODR_G), ISPU_RATE)

Note that, if the ISPU IRQ rate is lower than the sensor output data rate, the sensor data read by the ISPU is
downsampled (there is no additional filtering applied to the data, so the signal processed by the ISPU can be
potentially affected by aliasing).

Table 34. ISPU IRQ rate selection

ISPU_RATE_[3:0] Rate

0000 0 Hz (always sleeping)

0001 12.5 Hz

0010 26 Hz

0011 52 Hz

0100 104 Hz

0101 208 Hz

0110 416 Hz

0111 833 Hz

1000 1667 Hz

1001 3333 Hz

1010 6667 Hz

1011-1111 Reserved

The ISPU can be put in the sleep state by attempting to access (via a load or store instruction) an address outside
of the address space (see Section 9.2 Memory mapping). This causes the clock of the ISPU to be stopped. This
can be achieved, for example, by executing a load from address 0x20000 using the following assembly code:
ldb %r0, [0x20000]

When the new data sample arrives from the sensor generating the trigger to wake up the ISPU, the clock is
restarted and the execution resumes from the next instruction.

AN5850
Processing cycle and rate configuration

AN5850 - Rev 1 page 44/65

9.2 Memory mapping
Memory addresses are expressed as 17-bit values in the ISPU. The address space is subdivided as follows:
• 0x00000 - 0x01FFF → Variable data RAM (8 KB)
• 0x06800 - 0x068FF → Most of the registers, including the input data registers and output registers
• 0x06900 - 0x069FF → Additional registers, including the configuration registers
• 0x10000 - 0x17FFF → Code and read-only data RAM (32 KB)
For a detailed list of all register addresses, refer to Section 2 Registers.

9.3 ISPU interaction registers
Most of the registers used to interact with the ISPU fall under the group named "ISPU interaction registers" (refer
to Section 2.1 ISPU interaction registers for the complete list).
In order to access these registers from the device interface, it is necessary to set the ISPU_REG_ACCESS
bit in the FUNC_CFG_ACCESS register to 1. Once it is no longer needed to access these registers, the
ISPU_REG_ACCESS bit should be set back to 0 in order to restore access to the default registers.

9.4 Sensor data
Both the data generated by the sensor itself and the data read from the external sensor through the sensor hub
can be read from the corresponding internal registers only accessible from the ISPU:
• Accelerometer

– X-axis: ISPU_ARAW_X_L (6880h) contains the least significant byte, ISPU_ARAW_X_H (6881h)
contains the most significant byte.

– Y-axis: ISPU_ARAW_Y_L (6884h) contains the least significant byte, ISPU_ARAW_Y_H (6885h)
contains the most significant byte.

– Z-axis: ISPU_ARAW_Z_L (6888h) contains the least significant byte, ISPU_ARAW_Z_H (6889h)
contains the most significant byte.

• Gyroscope
– X-axis: ISPU_GRAW_X_L (688Ch) contains the least significant byte, ISPU_GRAW_X_H (688Dh)

contains the most significant byte.
– Y-axis: ISPU_GRAW_Y_L (6890h) contains the least significant byte, ISPU_GRAW_Y_H (6891h)

contains the most significant byte.
– Z-axis: ISPU_GRAW_Z_L (6894h) contains the least significant byte, ISPU_GRAW_Z_H (6895h)

contains the most significant byte.
• External sensor

– First byte: ISPU_ERAW_0_L (6898h)
– Second byte: ISPU_ERAW_0_H (6899h)
– Third byte: ISPU_ERAW_1_L (689Ch)
– Fourth byte: ISPU_ERAW_1_H (689Dh)
– Fifth byte: ISPU_ERAW_2_L (68A0h)
– Sixth byte: ISPU_ERAW_2_H (68A1h)

• Temperature: ISPU_TEMP_L (68A4h) contains the least significant byte, ISPU_TEMP_H (68A5h) contains
the most significant byte.

The values of each axis of the accelerometer and gyroscope, and the temperature value are expressed as 16-bit
words in two's complement. Within the ISPU code, they should be interpreted using the int16_t type available in
the stdint.h library. Alternatively, it is possible to read, for each value, two more bytes (available in the registers
immediately after the first two bytes) and interpret the four bytes as a 32-bit word in two's complement (int32_t
type), as a sign extension to 32 bits is applied when the values are written to the registers. The values represent
the raw data generated by the sensor, so, if necessary, the sensitivity must be applied to the values by following
the same procedure used for the regular sensor output registers.
The external sensor data should be interpreted according to the format produced by the sensor connected to the
sensor hub. Note that the sign extension is applied also to the external sensor data for each couple of bytes (for
example ISPU_ERAW_0_L and ISPU_ERAW_0_H are treated as one value and extended to 32 bits), but it might
be wrong to use depending on the original format of the data. If that is the case, the sign extension should be
ignored and only the first 16 bits should be used.

AN5850
Memory mapping

AN5850 - Rev 1 page 45/65

9.5 Configuration
Besides reading the sensor data, it might be useful to receive inputs from the external microcontroller, for example
to communicate some configuration parameters values at runtime instead of having to set them at compile time.
For this reason, four 16-bit general-purpose registers are available:
• ISPU_DUMMY_CFG_1 (73h-74h / 6974h-6975h)
• ISPU_DUMMY_CFG_2 (75h-76h / 6976h-6977h)
• ISPU_DUMMY_CFG_3 (77h-78h / 6978h-6979h)
• ISPU_DUMMY_CFG_4 (79h-7Ah / 697Ah-697Bh)
These registers are readable and writable from the device interface (that is, from the external microcontroller) and
are readable from the ISPU. The registers are general-purpose and any value can be encoded in the 8 bytes
available. However, when reading the values from the ISPU, note that:
• The first byte of each 16-bit register (for example, ISPU_DUMMY_CFG_1_L at 6974h) can be read

individually, but the second byte (for example, ISPU_DUMMY_CFG_1_H at 6975h) cannot. In order to
properly read the second byte, the whole 16-bit register must be read as a single value. The second byte
can then be extracted, for example with a shift operation:
uint8_t second_byte = *((volatile uint16_t *)ISPU_DUMMY_CFG_1) >> 8;

• Bytes that are not contained in the same 16-bit register cannot be read together in one step, but
each 16-bit register must be read separately. The final value can then be obtained by reassembling
the bytes as needed. For example, to read a 32-bit value contained in ISPU_DUMMY_CFG_1 and
ISPU_DUMMY_CFG_2:
uint32_t four_bytes_value = ((uint32_t)*((volatile uint16_t *)ISPU_DUMMY_CFG_2) << 16)
| *((volatile uint16_t *)ISPU_DUMMY_CFG_1);

If the ISPU_DUMMY_CFG registers are used to set the initial configuration parameters for an algorithm, it is
recommended to write these values before enabling the algorithm (explained in Section 9.8 Algorithms), so that
they are available for the algorithm initialization code.
An additional register, ISPU_IF2S_FLAG (0Ch-0Dh / 680Ch-680Dh), provides bits that can be set from the
device interface (by the external microcontroller) and cleared by the ISPU. This register, contrary to the
ISPU_DUMMY_CFG registers, is part of the ISPU interaction registers.
The intended use of the ISPU_IF2S_FLAG register is to raise flags to the ISPU, which can check the register,
detect the bits that are set to 1, perform specific actions accordingly, and then clear the bits to signal that the
request received from the device interface was served.
In order to set a bit of the ISPU_IF2S_FLAG register, it is sufficient to write 1 to it from the device interface. In
order to clear the bit, the ISPU must write again 1 to it. While this might be counterintuitive, writing 1 means
requesting the bit to be cleared.
The following code provides an example of how to use the ISPU_IF2S_FLAG within the ISPU:
uint8_t flag = *((volatile uint8_t *)ISPU_IF2S_FLAG) & 0x01; // get bit 0 value
if (flag) {
 // serve request from external microcontroller
 *((volatile uint8_t *)ISPU_IF2S_FLAG) = 0x01; // clear bit 0
}

AN5850
Configuration

AN5850 - Rev 1 page 46/65

9.6 Additional inputs
In addition to the registers described in Section 9.4 Sensor data and Section 9.5 Configuration, there are two
more inputs accessible from the ISPU:
• TIMESTAMP0 (40h / 6940h), TIMESTAMP1 (41h / 6941h), TIMESTAMP2 (42h / 6942h) and TIMESTAMP3

(43h / 6943h) provide the timestamp information (see Section 5 Timestamp).
• ISPU_DTIME_0_L (6948h), ISPU_DTIME_0_H (6949h), ISPU_DTIME_1_L (694Ah), and

ISPU_DTIME_1_H (694Bh) provide an accurate value of the actual delta time of the device.
The timestamp is expressed as a 32-bit word with a bit resolution of 25 μs (typical).
The delta time is expressed as a 32-bit word encoded as a single-precision floating-point number and represents,
in seconds, the actual delta time (time between two consecutive samples) of the sensor with the data rate
configured at 104 Hz. The delta time value always refers to the sensor configured at 104 Hz, regardless of the
data rate currently set, so the value must be properly rescaled if the delta time for a different data rate is needed
(for example, it must be doubled to obtain the delta time for 52 Hz or halved to obtain the delta time for 208 Hz).
This is useful because the data rate of the sensor is not guaranteed to be exactly the nominal value and, as
a consequence, the delta time can deviate from the nominal value. The value in the ISPU_DTIME registers,
properly rescaled for the configured data rate, can then be used when high accuracy is necessary, for example
when integrating gyroscope data over time.
Just like the ISPU_DUMMY_CFG registers, both TIMESTAMP and ISPU_DTIME cannot be read from the ISPU in
one step as 32-bit values, but must be read in two steps (first two bytes and last two bytes) and then recombined.
For example, the timestamp value can be read using the following code:
uint32_t timestamp = ((uint32_t)*((volatile uint16_t *)TIMESTAMP2) << 16) | *((volatile
uint16_t *)TIMESTAMP0);
uint64_t timestamp_us = timestamp * 25;

Note that the timestamp generation must be enabled by setting the TIMESTAMP_EN bit to 1 in the CTRL10_C
register.
The delta time register value, instead, can be read and rescaled as follows:
union {
 uint32_t bytes;
 float value;
} dtime;

dtime.bytes = ((uint32_t)*((volatile uint16_t *)ISPU_DTIME_1) << 16) | *((volatile uint16_t
*)ISPU_DTIME_0);
dtime.value *= 104.0f / ISPU_ACTUAL_RATE;

Note that the delta time value contained in the ISPU_DTIME register is fixed and does not change at runtime. For
this reason, the value may be read only once, for example during the initialization routine of an algorithm.

AN5850
Additional inputs

AN5850 - Rev 1 page 47/65

9.7 Outputs
In order to export the results of the processing, the ISPU can write data to be read from the device interface to a
set of general-purpose registers. In particular, 32 16-bit registers are available, for a total of 64 bytes that can be
used to encode any information. These registers are part of the ISPU interaction registers:
• ISPU_DOUT_00_L (10h / 6810h), ISPU_DOUT_00_H (11h / 6811h)
• ISPU_DOUT_01_L (12h / 6812h), ISPU_DOUT_01_H (13h / 6813h)
• ...
• ISPU_DOUT_31_L (4Eh / 684Eh), ISPU_DOUT_31_H (4Fh / 684Fh)
These registers are readable and writable from the ISPU, but are only readable by the external microcontroller
from the device interface.
A block data update (BDU) mechanism in these registers is also available. Usually, if the output values are
read synchronously to an interrupt signal generated by the ISPU when the outputs have just been written, this
mechanism is not needed. However, if the output values are read asynchronously or if reading from the external
microcontroller is very slow, it might happen that some bytes of a particular output value are read before being
updated with a new value by the ISPU, while the other bytes are read after. The resulting read value is thus
corrupted. The BDU prevents this problem by blocking the refresh of all the bytes of the value at the start of the
read until all bytes have been read. Note that the write of the new value by the ISPU is successful, but the old
value is sent over the device interface until all bytes have been read.
The block data update can be enabled by setting the BDU bit to 1 in the CTRL3_C register. In addition, since
the ISPU output registers are general purpose and the data may be encoded in multiple ways, a few different
configurations for the BDU are available to accommodate most usages. The available configurations are listed in
Table 35 and can be set by writing the ISPU_BDU_[1:0] field in the CTRL9_C register.

Table 35. ISPU block data update configuration

ISPU_BDU_[1:0] ISPU_DOUT_00_L to ISPU_DOUT_15_H ISPU_DOUT_16_L to ISPU_DOUT_31_H

00 BDU disabled BDU disabled

01 BDU on 2 bytes (16 outputs) BDU on 4 bytes (8 outputs)

10 BDU on 2 bytes (16 outputs) BDU on 2 bytes (16 outputs)

11 BDU on 4 bytes (8 outputs) BDU on 4 bytes (8 outputs)

For example, by setting the ISPU_BDU_[1:0] field to 01, the first 32 bytes are considered to be 16 values of 2
bytes each, while the last 32 bytes are considered to be 8 values of 4 bytes each.

AN5850
Outputs

AN5850 - Rev 1 page 48/65

9.8 Algorithms
The ISPU is an embedded core that can be freely programmed to handle the processing of data as desired.
However, the device also implements some mechanisms at a hardware level to facilitate the execution of multiple
algorithms or processing logics and the management of their lifecycle.
The device is able to generate a number of interrupt requests (IRQ), as shown in Table 36. These should
not be confused with the interrupts generated by the device on the INT1 and INT2 pins, described in
Section 9.9 Interrupts.
Each interrupt request corresponds to a hardware signal that can be sent to the ISPU to execute a specific routine
upon request. The user must create an interrupt vector table (IVT) to map each interrupt request to a proper
routine to serve it. Each entry of the IVT must be implemented as a jump to the routine. The jump instruction must
be placed at the address specified in Table 36. Note that the IVT must be placed at the beginning of the 32 KB
RAM for code and read-only data, so the addresses specified in the table are relative to the address 0x10000.

Table 36. ISPU interrupt requests

Program address Interrupt definition

0x00 Boot

0x04 Algorithm 00 run

0x08 Algorithm 01 run

0x0C Algorithm 02 run

0x10 Algorithm 03 run

0x14 Algorithm 04 run

0x18 Algorithm 05 run

0x1C Algorithm 06 run

0x20 Algorithm 07 run

0x24 Algorithm 08 run

0x28 Algorithm 09 run

0x2C Algorithm 10 run

0x30 Algorithm 11 run

0x34 Algorithm 12 run

0x38 Algorithm 13 run

0x3C Algorithm 14 run

0x40 Algorithm 15 run

0x44 Algorithm 16 run

0x48 Algorithm 17 run

0x4C Algorithm 18 run

0x50 Algorithm 19 run

0x54 Algorithm 20 run

0x58 Algorithm 21 run

0x5C Algorithm 22 run

0x60 Algorithm 23 run

0x64 Algorithm 24 run

0x68 Algorithm 25 run

0x6C Algorithm 26 run

0x70 Algorithm 27 run

0x74 Algorithm 28 run

AN5850
Algorithms

AN5850 - Rev 1 page 49/65

Program address Interrupt definition

0x78 Algorithm 29 run

0x80 Algorithm 00 initialization

0x84 Algorithm 01 initialization

0x88 Algorithm 02 initialization

0x8C Algorithm 03 initialization

0x90 Algorithm 04 initialization

0x94 Algorithm 05 initialization

0x98 Algorithm 06 initialization

0x9C Algorithm 07 initialization

0xA0 Algorithm 08 initialization

0xA4 Algorithm 09 initialization

0xA8 Algorithm 10 initialization

0xAC Algorithm 11 initialization

0xB0 Algorithm 12 initialization

0xB4 Algorithm 13 initialization

0xB8 Algorithm 14 initialization

0xBC Algorithm 15 initialization

0xC0 Algorithm 16 initialization

0xC4 Algorithm 17 initialization

0xC8 Algorithm 18 initialization

0xCC Algorithm 19 initialization

0xD0 Algorithm 20 initialization

0xD4 Algorithm 21 initialization

0xD8 Algorithm 22 initialization

0xDC Algorithm 23 initialization

0xE0 Algorithm 24 initialization

0xE4 Algorithm 25 initialization

0xE8 Algorithm 26 initialization

0xEC Algorithm 27 initialization

0xF0 Algorithm 28 initialization

0xF4 Algorithm 29 initialization

The interrupt request at 0x00 is generated when booting the ISPU (see Section 9.12 Boot procedure) and must
jump to a procedure that executes the startup code and then puts the ISPU in the sleep state to wait for the first
data sample from the sensor.
As indicated in Table 36, there is hardware support for up to 30 algorithms, from algorithm 00 to algorithm 29. The
device is able to generate, for each algorithm, an interrupt request to execute the algorithm initialization code and
an interrupt request to execute the run code of the algorithm.
The generation of the interrupt requests related to the algorithms is controlled by the user by writing, from
the ISPU code, to the appropriate registers. First of all, the ISPU_GLB_CALL_EN bit in ISPU_GLB_CALL_EN
(6800h) must be set to 1 in order to enable the interrupt request generation for all algorithms.

AN5850
Algorithms

AN5850 - Rev 1 page 50/65

Then, in order to generate an interrupt request for an algorithm, the corresponding bit must be set to 1 in registers
ISPU_CALL_EN_0 (68B8h), ISPU_CALL_EN_1 (68B9h), ISPU_CALL_EN_2 (68BAh) and ISPU_CALL_EN_3
(68BBh). Note that bit 0 of the ISPU_CALL_EN_0 register must be kept at 0. For example, in order to generate an
interrupt request for algorithm 00, the bit ISPU_CALL_ALGO_0 (which is bit 1) of ISPU_CALL_EN_0 must be set
to 1. When this bit is set to 1, the interrupt request for the corresponding algorithm is generated and the bit value
remains at 1 until the interrupt service routine of the algorithm has completed. Once the routine has completed,
the bit is automatically reset to 0. This allows monitoring the status of the execution of the algorithms and waiting
for their completion before putting the ISPU in the sleep state to wait for the next data sample from the sensor.
When an interrupt is requested for an algorithm, the interrupt request generated normally corresponds to the
routine for running the algorithm, except for the first time, when an interrupt request is generated to execute
the algorithm initialization routine. In order to trigger again the execution of the algorithm initialization code, it is
necessary to disable and re-enable the algorithm, as explained in the following paragraphs.
Of course the interrupt requests for the algorithms can be generated at any time, but it is recommended to
generate them after the ISPU has been woken up due to a new data sample being available from the sensor. In
this way the algorithms can be executed to process the new data sample and then the ISPU can be again put in
the sleep state.
Figure 11 in Section 9.9 Interrupts shows the usage of the ISPU_CALL_EN registers in the recommended
processing cycle.
If the execution of multiple algorithms is requested at the same time, the algorithm routines are executed in order,
from algorithm 29 to algorithm 00.
A set of registers, part of the ISPU interaction registers, is available to enable or disable each algorithm from the
device interface:
• ISPU_ALGO0 (70h / 6870h) allows enabling / disabling algorithms 00 to 07.
• ISPU_ALGO1 (71h / 6871h) allows enabling / disabling algorithms 08 to 15.
• ISPU_ALGO2 (72h / 6872h) allows enabling / disabling algorithms 16 to 23.
• ISPU_ALGO3 (73h / 6873h) allows enabling / disabling algorithms 24 to 29.
As mentioned above, disabling and re-enabling an algorithm using these registers resets an internal flag that
causes the algorithm initialization routine to be called the next time an interrupt request is generated. Aside from
this, it is up to the user to use these registers within the ISPU code to enable and disable the execution of the
algorithms, which exclusively depends on the value of the ISPU_GLB_CALL_EN bit and on which bits are written
to 1 in the ISPU_CALL_EN registers. For example, when the ISPU is woken up, the ISPU_ALGO registers can
be read in order to determine which algorithms are enabled and set the corresponding bits in the ISPU_CALL_EN
registers, thus executing only the enabled algorithms. This can be achieved as follows:
*((volatile uint32_t *)ISPU_CALL_EN) = *((volatile uint32_t *)ISPU_ALGO) << 1;

The bits in the ISPU_ALGO registers can also be cleared from the ISPU in order to disable the algorithms.
This can be achieved by writing 1 to the bit corresponding to the algorithm to disable. While this might be
counterintuitive, writing 1 means requesting the bit to be cleared. However, it is not possible to enable the
algorithms from the ISPU.

AN5850
Algorithms

AN5850 - Rev 1 page 51/65

9.9 Interrupts
In order to keep the external microcontroller sleeping most of the time, it is necessary to avoid polling for new
results from the ISPU. For this reason, it is possible to generate interrupt signals on the INT1 and INT2 pins of the
device to wake up the external microcontroller only when necessary.
First of all, routing the interrupts must be enabled:
• Setting INT1_ISPU to 1 in the MD1_CFG register enables routing the interrupts to the INT1 pin.
• Setting INT2_ISPU to 1 in the MD2_CFG register enables routing the interrupts to the INT2 pin.
The interrupts can then be configured in two different modes by setting the LATCH bit in the ISPU_CONFIG
register, which is part of the ISPU interaction registers:
• Pulsed mode is selected by setting the LATCH bit to 0 (default value).
• Latched mode is selected by setting the LATCH bit to 1.
If the interrupts are configured in pulsed mode, the interrupt pins must be directly controlled from the ISPU code
by writing 0 or 1 to the INT1 and INT2 bits in register ISPU_INT_PIN (685Ch). Writing 0 causes the pin to be set
to the inactive level, writing 1 causes the pin to be set to the active level.
Note that the active level of the interrupt pins can be either set to high or low depending on the value of the
H_LACTIVE bit in the CTRL3_C register. If the H_LACTIVE bit is set to 0, the interrupt pins are active high,
otherwise they are active low.
In order to generate a pulsed interrupt signal, the INT1 or INT2 bit (based on the desired pin) can be set to 1 at
the end of the processing of a data sample (if an interrupt must be raised) and set back to 0 when the ISPU is
woken up because the next data sample is available. In this way, the interrupt line remains active for no longer
than the time between the generation of two consecutive samples and the external microcontroller does not need
to perform any action to reset the line.
If the interrupts are instead configured in latched mode, the ISPU is unable to directly set the pin level. Instead,
the interrupt line is automatically controlled by the device.
A latched interrupt is generated when one or multiple interrupt flags are raised in the interrupt status registers,
which are part of the ISPU interaction registers:
• ISPU_INT_STATUS0 (58h / 6858h) contains the interrupt flags for algorithms 00 to 07.
• ISPU_INT_STATUS1 (59h / 6859h) contains the interrupt flags for algorithms 08 to 15.
• ISPU_INT_STATUS2 (5Ah / 685Ah) contains the interrupt flags for algorithms 16 to 23.
• ISPU_INT_STATUS3 (5Bh / 685Bh) contains the interrupt flags for algorithms 24 to 29.
In addition, the bits in the ISPU_INT1_CTRL or ISPU_INT2_CTRL registers corresponding to the raised interrupt
flags must be set to 1, otherwise, the flags are ignored and the latched interrupt is not generated on the pins.
These control registers, part of the ISPU interaction registers, must be written from the device interface and can
be used to enable or disable routing the interrupts to the INT1 and INT2 pins for each algorithm:
• ISPU_INT1_CTRL0 (50h / 6850h) allows enabling / disabling routing to INT1 for algorithms 00 to 07.
• ISPU_INT1_CTRL1 (51h / 6851h) allows enabling / disabling routing to INT1 for algorithms 08 to 15.
• ISPU_INT1_CTRL2 (52h / 6852h) allows enabling / disabling routing to INT1 for algorithms 16 to 23.
• ISPU_INT1_CTRL3 (53h / 6853h) allows enabling / disabling routing to INT1 for algorithms 24 to 29.
• ISPU_INT2_CTRL0 (54h / 6854h) allows enabling / disabling routing to INT2 for algorithms 00 to 07.
• ISPU_INT2_CTRL1 (55h / 6855h) allows enabling / disabling routing to INT2 for algorithms 08 to 15.
• ISPU_INT2_CTRL2 (56h / 6856h) allows enabling / disabling routing to INT2 for algorithms 16 to 23.
• ISPU_INT2_CTRL3 (57h / 6857h) allows enabling / disabling routing to INT2 for algorithms 24 to 29.
In latched mode, the interrupt line is set back to the inactive level when the external microcontroller reads the
raised bits in the interrupt status registers.
Note that the interrupt flags in the interrupt status registers are not automatically generated, but it is up to the user
to write, from the ISPU code, the corresponding bit to 1 when an algorithm triggers an interrupt (in pulsed mode,
this should be done before generating the actual interrupt signal on the pin). If latched mode is enabled, then the
bits are automatically reset when reading the interrupt status registers from the device interface. If latched mode
is disabled, it is once again up to the user to set the bits back to 0. The reset of these bits should be performed
at the same time as the the ISPU_INT_PIN register is written in order to set the interrupt pin back to the inactive
level (for example, when the ISPU is woken up because the next data sample is available). The purpose of the
interrupt status registers is to allow the external microcontroller to understand which algorithms have generated
the interrupt.

AN5850
Interrupts

AN5850 - Rev 1 page 52/65

Figure 11 shows the usage of the ISPU_INT_PIN and ISPU_INT_STATUS registers in the recommended
processing cycle. Note that, as explained above, writing the ISPU_INT_PIN register does not have an effect
if latched mode is enabled, but should be done anyway to support pulsed mode with the same code.

Figure 11. ISPU recommended processing cycle

Sensor data ready

Clear ISPU_INT_PIN and ISPU_INT_STATUS for pulsed mode(1)

Write ISPU_CALL_EN to trigger algorithms

Check ISPU_CALL_EN to wait for completion of algorithms

Write interrupt flags to ISPU_INT_STATUS

Write ISPU_INT_PIN to generate the pulsed interrupts(1)

Stop ISPU clock

1. This step is not necessary if interrupt latched mode is enabled.

In the main register page, a copy of the interrupt flags is also available in registers
ISPU_INT_STATUS0_MAINPAGE, ISPU_INT_STATUS1_MAINPAGE, ISPU_INT_STATUS2_MAINPAGE, and
ISPU_INT_STATUS3_MAINPAGE, which are readable without having to enable the access to the ISPU
interaction registers. If latched mode is enabled, in order to clear the interrupt, reading these registers is
equivalent to reading the ISPU_INT_STATUS registers.
Of course the bits of the interrupt status registers can be used freely, so if the concept of multiple algorithms is not
used, the bits can be used, for example, to distinguish different types of interrupts related to the same algorithm.
Note that, in pulsed mode, the ISPU_INT1_CTRL and ISPU_INT2_CTRL registers produce no effect on the
device, and it is up to the user to use them within the ISPU code to generate an interrupt only if the bit
corresponding to the algorithm that generates the interrupt is set to 1, meaning that the interrupt must be routed
to the pin. A generic interrupt can be generated at software level and then, based on the ISPU_INT1_CRTL and
ISPU_INT2_CTRL register values, it can be decided whether to generate an interrupt on the desired interrupt pin.
This can be achieved with some simple masking, as shown in the following code.
*((volatile uint8_t *)ISPU_INT_PIN) = (((int_status & *((volatile uint32_t *)ISPU_INT1_CTRL)
> 0) << 0) | (((int_status & *((volatile uint32_t *)ISPU_INT2_CTRL) > 0) << 1);

In the snippet of code above, the int_status variable contains the interrupt flags for all algorithms (this is also the
value that can be written to the interrupt status registers). The value of this variable is masked with the content of
the interrupt control registers to determine whether to actually trigger an interrupt on each of the two pins (INT1
and INT2).

AN5850
Interrupts

AN5850 - Rev 1 page 53/65

In addition to the physical interrupts, an additional register, ISPU_S2IF_FLAG (0Eh-0Fh / 680Eh-680Fh), provides
bits that can be set by the ISPU and cleared from the device interface by the external microcontroller. This
register is part of the ISPU interaction registers.
The intended use of the ISPU_S2IF_FLAG register is to raise flags to the external microcontroller, which can
check the register, detect the bits that are set to 1, perform specific actions accordingly and then clear the bits to
signal that the request received from the ISPU was served. In this sense, these bits can be used to implement a
sort of software interrupt. Of course, in this case, the external microcontroller needs to poll the register to detect
when the flags are raised. Alternatively, this register could be used in combination with a physical interrupt to ask
the external microcontroller to perform some actions when the interrupt is received.
In order to set a bit of the ISPU_S2IF_FLAG register, it is sufficient to write 1 to it from the ISPU. In order to clear
the bit, the bit must be written again to 1 from the device interface. While this might be counterintuitive, writing 1
means requesting the bit to be cleared.
The INT2 pin can also be used for monitoring the active time of the ISPU. The ISPU sleep signal can be
routed to the INT2 pin of the device by setting the INT2_SLEEP_ISPU bit to 1 in the INT2_CTRL register.
When this functionality is enabled, the INT2 line is set to the inactive level while the ISPU is running, and set
to the active level while the ISPU is sleeping. Using the signal produced on the INT2 pin, it is then possible to
measure the total execution time of processing for one data sample. This can be achieved by measuring the time
that the signal remains continuously at the inactive level, for example using a logic analyzer or a timer on the
external microcontroller. Figure 12 shows an example of the signal produced on the INT2 pin after enabling the
INT2_SLEEP_ISPU bit.

Figure 12. Example of the ISPU sleep signal on the INT2 pin (H_LACTIVE = 0)

Data rate period

ISPU running

ISPU sleeping

INT2

As explained in Section 9.1 Processing cycle and rate configuration, evaluating the execution time is important
to make sure that the processing is completed before the next data sample is available. Additionally, it makes it
possible to evaluate the impact of optimizations to improve the performance of the processing logic, which, even
if it is already fast enough to process data at the configured data rate, can still be improved to reduce the active
time of the ISPU and thus the power consumption.
Another way to evaluate the performance of the implemented code is to set the interrupts in pulsed mode and
control either or both interrupt pins directly. This allows measuring the performance of specific portions of code
instead of the whole processing logic. This can be achieved, for example, by setting an interrupt pin to the inactive
level just before the portion of code of interest and setting it back to the active level just after. The execution time
for the portion of code of interest can then be obtained by measuring the time that the interrupt signal remains
continuously at the inactive level (using a logic analyzer or a timer on the external microcontroller).

AN5850
Interrupts

AN5850 - Rev 1 page 54/65

9.10 Memory access
The ISPU is supported by two separate RAMs, one of 32 KB size for code and read-only data, and one of 8 KB
size for variable data.
In addition to being accessible from the ISPU, the contents of the two RAMs can also be accessed from the
device interface (I²C or SPI) using specific procedures. As explained in Section 9.11 Program loading, this is
necessary in order to load the binary of the program to the RAM.
In order to write to the RAM, these steps must be followed:
1. The MEM_SEL bit in the ISPU_MEM_SEL register must be configured to select one of the two RAMs.

a. Writing 0 to MEM_SEL selects the variable data RAM (8 KB).
b. Writing 1 to MEM_SEL selects the code and read-only data RAM (32 KB).

2. Write 0 to READ_MEM_EN in the ISPU_MEM_SEL register to enable writing.
3. Write the address that the data must be written to in the ISPU_MEM_ADDR registers.

a. The ISPU_MEM_ADDR1 register must contain the most significant byte of the address.
b. The ISPU_MEM_ADDR0 register must contain the least significant byte of the address.

4. Write the data at the selected location by writing it in the ISPU_MEM_DATA register. If multiple writes are
performed without setting a new address, each new byte is written to the next location (the address is
automatically incremented).

Note that the autoincrement of the address does not work when crossing the following memory locations in the
code and read-only RAM (32 KB):
• 1FFFh → 2000h
• 3FFFh → 4000h
• 5FFFh → 6000h
When crossing the above locations, the address must be explicitly set in the ISPU_MEM_ADDR registers.
In order to read from the RAM, these steps must be followed:
1. The MEM_SEL bit in the ISPU_MEM_SEL register must be configured to select one of the two RAMs.

a. Writing 0 to MEM_SEL selects the variable data RAM (8 KB).
b. Writing 1 to MEM_SEL selects the code and read-only data RAM (32 KB).

2. Write 1 to READ_MEM_EN in the ISPU_MEM_SEL register to enable reading.
3. Write the address that the data must be read from in the ISPU_MEM_ADDR registers.

a. The ISPU_MEM_ADDR1 register must contain the most significant byte of the address.
b. The ISPU_MEM_ADDR0 register must contain the least significant byte of the address.

4. Read the data at the selected location by reading the ISPU_MEM_DATA register. If multiple reads are
performed without setting a new address, each new byte is read from the next location (the address is
automatically incremented).

Note that every time a new address is set in the ISPU_MEM_ADDR registers, the first read byte must be
discarded.
Note also that all the registers mentioned above are part of the ISPU interaction registers, so, in order to perform
the above procedures, access to that set of registers must be enabled as explained in Section 9.3 ISPU
interaction registers.
The above procedures should be mainly used to load the ISPU program and optionally read it back to check if it
was correctly loaded. It is possible to access the RAM at runtime (after the ISPU boot), but it is not recommended
since it must be guaranteed that the ISPU is in sleep mode (clock stopped) while accessing the memory.

AN5850
Memory access

AN5850 - Rev 1 page 55/65

9.11 Program loading
Once a program has been compiled using the ISPU toolchain, it must be loaded to the RAM of the device before
performing the boot procedure described in Section 9.12 Boot procedure.
Before loading the program to the device, it is recommended to always perform a software reset of the ISPU
by setting the SW_RESET_ISPU bit of the FUNC_CFG_ACCESS register to 1 and then immediately setting it
back to 0. This step is necessary if the ISPU was previously booted. It resets the ISPU core and registers (ISPU
interaction registers and ISPU functions registers).
The primary output of the toolchain is a binary ELF (executable and linkable format) file containing the binary of
the program. However, it is possible to convert the ELF file to the Motorola S-record (SREC) format, which is
text-based and much easier to parse. This conversion can be done using the following command:
reisc-objcopy -O srec ispu.elf ispu.srec

The SREC file contains different types of lines, but the lines of interest are those starting with "S2". These lines
provide the actual data to write to the device and have the following format:

type count address data checksum

S 2 N N A A A A A A D[0] D[0] D[1] D[1] ... D[N-1] D[N-1] C C

• S is the first character for every line in an SREC file.
• The type field indicates the record type, in this case (type = 2) a data record with a 24-bit address.
• The count field is the number of bytes in the record (including address, data, and checksum), expressed

as one byte in hexadecimal format.
• The address field is expressed as a 24-bit value in hexadecimal format and represents the address the

data must be written to. Addresses for the ISPU utilize only 17 of the 24 bits, the remaining bits are set
to zero. The most significant bit (of the 17 bits) represents the RAM selection and can be mapped to the
MEM_SEL bit in the ISPU_MEM_SEL register. The remaining 16 bits represent the address that can be set
in the ISPU_MEM_ADDR1 (most significant byte) and ISPU_MEM_ADDR0 (least significant byte) registers.

• The data field is also expressed in hexadecimal format and can vary in size depending on the count field.
These bytes must be loaded sequentially to the device RAM starting from the address.

• The checksum field contains a one byte checksum of the count, address, and data fields, expressed in
hexadecimal format.

In order to load the program it is then possible to parse the SREC file and, for each "S2" line, select the RAM
to write to, set the address specified, and write the data bytes included in the line, all while following the write
procedure described in Section 9.10 Memory access.
Note that the address automatic increment can be leveraged to reduce the number of writes to the device, but the
address must be explicitly set when writing non-consecutive bytes or when crossing the locations that inhibit the
automatic increment listed in Section 9.10 Memory access.

Note: The toolchain provided by STMicroelectronics allows converting the SREC format into ready-to-use formats that
are supported by STMicroelectronics tools and that can be directly integrated in custom projects. These formats
contain the sequence of write operations to load the program from the device interface.

AN5850
Program loading

AN5850 - Rev 1 page 56/65

9.12 Boot procedure
After the program has been loaded to the device RAM, the following procedure must be followed in order to boot
the ISPU core:
1. Configure the ISPU clock to 5 MHz by setting the ISPU_CLK_SEL bit in the CTRL10_C register to 0.
2. Set the ISPU IRQ rate to 0 Hz by writing ISPU_RATE_[3:0] in the CTRL9_C register to 0h.
3. Power on the accelerometer sensor (if not already on) by writing ODR_XL[3:0] in the CTRL1_XL register to

a value other than 0h.
4. Enable the ISPU clock by writing the CLK_DIS bit of the ISPU_CONFIG register to 0.
5. Disable the ISPU reset by writing the ISPU_RST_N bit of the ISPU_CONFIG register to 1.
6. Wait for the end of the boot before any further sensor configuration.
Note that steps 4 and 5 can be performed with one single write to the ISPU_CONFIG register. ISPU_CONFIG is
part of the ISPU interaction registers.
The boot time depends on the loaded program, so, in order to know if the boot has ended, the external
microcontroller can poll the BOOT_END bit in the ISPU_STATUS (04h / 6804h) register and wait for its value
to become 1 (boot finished). The ISPU_STATUS register is part of the ISPU interaction registers. The boot is to be
considered finished when the boot code has been executed and the program is ready to process data samples.
Since the boot code is written by the user and can change, it is up to the user to set the BOOT_END bit to 1 from
the ISPU code once the boot code has been successfully executed.
As an alternative to polling the BOOT_END bit, the external microcontroller can implement a delay to wait for a
predefined time. However, in order to define the value of this delay, the boot time should be estimated in advance
during the development phase. For example, using the templates and examples provided by STMicroelectronics,
a wait of 5 ms is sufficient. The BOOT_END bit must be in any case set to 1 from the ISPU, otherwise the
ISPU does not go to sleep when trying to stop the clock as explained in Section 9.1 Processing cycle and rate
configuration.

Note: If a reboot of the ISPU is needed, the software reset described in Section 9.11 Program loading must be
performed before the boot procedure, even if no new program needs to be loaded.
The boot procedure can be automatically generated by the toolchain provided by STMicroelectronics.

9.13 Clock configuration and performance
The clock of the ISPU core can be configured to two different settings:
• 5 MHz (default) by setting the ISPU_CLK_SEL bit in the CTRL10_C register to 0.
• 10 MHz by setting the ISPU_CLK_SEL bit in the CTRL10_C register to 1.
If the gyroscope is powered on (the accelerometer may be powered on or off), the ISPU at 10 MHz consumes,
when running, roughly double the power than it would at 5 MHz (see Section 9.14 Power consumption).
However, the processing logic is executed in about half the time due to the doubled frequency and, as a
consequence, the ISPU is kept running for half the time. Since the ISPU consumes double the power but for half
the time, the average power consumption remains roughly the same. If only the accelerometer is powered on,
setting the clock to 10 MHz causes an additional fixed contribution to the power consumption, which means that
the ISPU at 10 MHz consumes more than double the power than the ISPU at 5 MHz.
Based on the considerations above, the 10 MHz clock, especially if the gyroscope is powered off, should be used
only if at 5 MHz the processing logic is not able to complete before the next sample arrives, as explained in
Section 9.1 Processing cycle and rate configuration.
However, the clock configuration is not the only way to improve the performance of the processing logic. It
may be possible to optimize the code, also considering the specific characteristics of the ISPU architecture.
This approach should be preferred over increasing the clock frequency if using only accelerometer in order to
avoid higher power consumption and should anyway be considered in order to reduce the execution time of the
processing logic and thus the overall power consumption of the device. A few suggestions for code optimization in
the ISPU are to:
• avoid floating-point divisions whenever possible (for example, divisions using constants may be done by

multiplications using the inverse value)
• avoid, if possible, the usage of complex mathematical functions like square root (for example, if computing

the norm of a vector, using the squared norm instead may be acceptable depending on the algorithm) or, if
necessary, use approximations that are faster to compute than the standard library functions

• avoid too many memory accesses (for example, use ring buffers instead of linear buffers that would require
shifting all elements each time a new element is inserted)

AN5850
Boot procedure

AN5850 - Rev 1 page 57/65

9.14 Power consumption
As explained in Section 9.13 Clock configuration and performance, the ISPU clock can be set to either 5 MHz or
10 MHz. Independently from the clock setting, at any time, the ISPU can be in one of the following two states:
• Sleep (clock stopped): this is the ISPU state if the clock is disabled (CLK_DIS bit set to 1 in the

ISPU_CONFIG register) or if the clock was stopped to put the ISPU in the sleep state until the next data
sample is available (see Section 9.1 Processing cycle and rate configuration).

• Run (clock running): this is the ISPU state if the clock is enabled (CLK_DIS bit set to 0 in the ISPU_CONFIG
register) and the ISPU is currently awake to process a data sample.

Table 37 shows, for each clock setting, the typical current consumption in the two states of the ISPU. Note that
these current consumption numbers must be added to the ones listed in Table 9 in Section 3 Operating modes
(related to the sensor only) in order to obtain the overall current consumption of the device.

Table 37. ISPU current consumption (@ Vdd = 1.8 V, T = 25 °C)

Clock Sleep Run

5 MHz 0 μA(1) 1150 μA(2)

10 MHz 0 μA(1) 2300 μA(2)

1. The current consumption of the ISPU in the sleep state (in the order of a few microamperes) is always present since the
device boot. For this reason, it cannot be distinguished from the sensor current consumption and it is included in the values
listed in Table 9.

2. Typical current consumption when configuring the ISPU with the worst-case load. The value is specified by design, not
tested in production and not guaranteed. In typical applications, the ISPU very seldom reaches the worst-load condition,
thus the power consumption is usually far lower than this figure of merit.

Note that the 10 MHz clock requires powering on an internal block that is also used when the gyroscope is
powered on. For this reason, if the gyroscope is in power-down mode, configuring the ISPU clock to 10 MHz adds
about 32 μA (in the typical case) to the values listed in Table 37 (for both sleep and run states).
Also note that if the boot procedure of the ISPU has not been performed, the ISPU adds no current consumption
(even if the clock is configured to 10 MHz) and the values listed in Table 9 represent the overall current
consumption of the device.
Normally, in an application, the ISPU is not always running, but it is running while processing the current data
sample and then sleeping until the next data sample is available. The actual current consumption of the ISPU is
then determined by the ratio between the time the ISPU is in the run state and the time it is in the sleep state.
Note that the values listed in Table 37 are the typical values measured with the worst-case load. Based on the
actual code running on the ISPU (for example the types of operations, reads and writes to the RAM, reads and
writes to the registers), the current consumption could be (and usually is) significantly lower.
As an example, a 6-axis sensor fusion algorithm using accelerometer and gyroscope data, running at 104 Hz with
the ISPU clock configured at 5 MHz, is executed in 3.2 ms and consumes 226 μA. That is the average current
consumption considering both when the ISPU is in the run state and when it is in the sleep state. In this case,
while the ISPU is in the run state, it consumes 677 μA.
An anomaly detection algorithm based on the features computation of the accelerometer data, running at 416 Hz
with the ISPU clock configured at 5 MHz, detecting anomalies with respect to one class, is executed in 251 μs
and consumes 76 μA. That is the average current consumption considering both when the ISPU is in the run state
and when it is in the sleep state. In this case, while the ISPU is in the run state, it consumes 729 μA.

AN5850
Power consumption

AN5850 - Rev 1 page 58/65

Appendix A

Table 38. ISPU instruction set

Group Acronym Description

Move

LD Load data from memory

ST Store data in memory

MOV Move data between registers

Arithmetic

UEXT Unsigned-value extension

SEXT Signed-value extension

ADD Integer addition

SUB Integer subtraction

MUL Integer multiplication

Floating

FADD Floating-point single-precision addition

FSUB Floating-point single-precision subtraction

FMUL Floating-point single-precision multiplication

Shift

SRL Shift-right logical

SRA Shift-right arithmetic

SLA Shift-left arithmetic

ROTC Rotate with carry

ROT Rotate left or right

Logical

AND Bitwise AND

OR Bitwise OR

XOR Bitwise XOR

CMP Compare

Branch

JPD Jump displacement

JPI Jump from immediate

JPR Jump from register

JLR Jump from register and link

JLI Jump from immediate and link

RET Return

RFE Return from exception

Special NOP No operation

AN5850

AN5850 - Rev 1 page 59/65

Revision history

Table 39. Document revision history

Date Version Changes

04-Aug-2022 1 Initial release

AN5850

AN5850 - Rev 1 page 60/65

Contents

1 Pin description .2
2 Registers .4

2.1 ISPU interaction registers. 6

2.2 ISPU functions registers. 10

2.3 Sensor hub registers. 12

3 Operating modes .14
3.1 Power-down mode . 16

3.2 High-performance mode. 16

3.3 Low-power mode. 16

3.4 Gyroscope sleep mode. 16

3.5 Connection modes . 16

3.6 Accelerometer bandwidth. 17

3.7 Gyroscope bandwidth . 18

3.8 Accelerometer and gyroscope turn-on/off time . 19

3.9 Reboot and software reset . 21

4 Mode 1 - reading output data. .22
4.1 Startup sequence . 22

4.2 Using the status register. 22

4.3 Using the data-ready signal . 23

4.4 Using the block data update (BDU) feature . 23

4.5 Understanding output data. 24
4.5.1 Examples of output data . 24

5 Timestamp .25
6 Mode 2 - sensor hub mode. .26

6.1 Sensor hub mode description . 26

6.2 Sensor hub mode registers . 27
6.2.1 MASTER_CONFIG (14h) . 27

6.2.2 STATUS_MASTER (22h) . 28

6.2.3 SLV0_ADD (15h), SLV0_SUBADD (16h), SLV0_CONFIG (17h) . 29

6.2.4 SLV1_ADD (18h), SLV1_SUBADD (19h), SLV1_CONFIG (1Ah). 30

6.2.5 SLV2_ADD (1Bh), SLV2_SUBADD (1Ch), SLV2_CONFIG (1Dh) 31

6.2.6 SLV3_ADD (1Eh), SLV3_SUBADD (1Fh), SLV3_CONFIG (20h) 32

6.2.7 DATAWRITE_SLV0 (21h) . 32

6.2.8 SENSOR_HUB_x registers . 33

AN5850
Contents

AN5850 - Rev 1 page 61/65

6.3 Sensor hub pass-through feature . 34

6.4 Sensor hub mode example . 35

7 Temperature sensor .37
7.1 Example of temperature data calculation . 37

8 Self-test .38
8.1 Accelerometer self-test. 38

8.2 Gyroscope self-test . 40

9 ISPU. .42
9.1 Processing cycle and rate configuration. 44

9.2 Memory mapping. 45

9.3 ISPU interaction registers. 45

9.4 Sensor data . 45

9.5 Configuration . 46

9.6 Additional inputs . 47

9.7 Outputs. 48

9.8 Algorithms . 49

9.9 Interrupts . 52

9.10 Memory access . 55

9.11 Program loading . 56

9.12 Boot procedure . 57

9.13 Clock configuration and performance . 57

9.14 Power consumption . 58

Appendix A .59
Revision history .60
List of tables .63
List of figures. .64

AN5850
Contents

AN5850 - Rev 1 page 62/65

List of tables
Table 1. Internal pin status . 3
Table 2. Registers . 4
Table 3. ISPU interaction registers . 6
Table 4. ISPU to external resources . 9
Table 5. ISPU interaction registers . 10
Table 6. Sensor hub registers . 12
Table 7. Accelerometer ODR and power mode selection . 14
Table 8. Gyroscope ODR and power mode selection . 15
Table 9. Power consumption (@ Vdd = 1.8 V, T = 25 °C). 15
Table 10. Gyroscope bandwidth. 18
Table 11. Accelerometer turn-on/off time. 19
Table 12. Accelerometer samples to be discarded . 19
Table 13. Gyroscope turn-on/off time . 20
Table 14. Gyroscope samples to be discarded. 20
Table 15. Output data registers content vs. acceleration (FS_XL = ±2 g) . 24
Table 16. Output data registers content vs. angular rate (FS_G = ±250 dps) . 24
Table 17. ODRcoeff values . 25
Table 18. MASTER_CONFIG register. 27
Table 19. STATUS_MASTER / STATUS_MASTER_MAINPAGE register . 28
Table 20. SLV0_ADD register . 29
Table 21. SLV0_SUBADD register . 29
Table 22. SLV0_CONFIG register . 29
Table 23. SLV1_ADD register . 30
Table 24. SLV1_SUBADD register . 30
Table 25. SLV1_CONFIG register . 30
Table 26. SLV2_ADD register . 31
Table 27. SLV2_SUBADD register . 31
Table 28. SLV2_CONFIG register . 31
Table 29. SLV3_ADD register . 32
Table 30. SLV3_SUBADD register . 32
Table 31. SLV3_CONFIG register . 32
Table 32. DATAWRITE_SLV0 register. 32
Table 33. Output data registers content vs. temperature . 37
Table 34. ISPU IRQ rate selection . 44
Table 35. ISPU block data update configuration . 48
Table 36. ISPU interrupt requests. 49
Table 37. ISPU current consumption (@ Vdd = 1.8 V, T = 25 °C) . 58
Table 38. ISPU instruction set . 59
Table 39. Document revision history . 60

AN5850
List of tables

AN5850 - Rev 1 page 63/65

List of figures
Figure 1. Pin connections . 2
Figure 2. Accelerometer filtering chain . 17
Figure 3. Gyroscope filtering chain . 18
Figure 4. Data-ready signal (DRDY_PULSED = 0) . 23
Figure 5. External sensor connections in mode 2 . 26
Figure 6. SENSOR_HUB_x allocation example . 33
Figure 7. Pass-through feature. 34
Figure 8. Accelerometer self-test procedure. 39
Figure 9. Gyroscope self-test procedure . 41
Figure 10. Sensor with ISPU core. 42
Figure 11. ISPU recommended processing cycle . 53
Figure 12. Example of the ISPU sleep signal on the INT2 pin (H_LACTIVE = 0) . 54

AN5850
List of figures

AN5850 - Rev 1 page 64/65

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

AN5850

AN5850 - Rev 1 page 65/65

http://www.st.com/trademarks

	1 Pin description
	2 Registers
	2.1 ISPU interaction registers
	2.2 ISPU functions registers
	2.3 Sensor hub registers

	3 Operating modes
	3.1 Power-down mode
	3.2 High-performance mode
	3.3 Low-power mode
	3.4 Gyroscope sleep mode
	3.5 Connection modes
	3.6 Accelerometer bandwidth
	3.7 Gyroscope bandwidth
	3.8 Accelerometer and gyroscope turn-on/off time
	3.9 Reboot and software reset

	4 Mode 1 - reading output data
	4.1 Startup sequence
	4.2 Using the status register
	4.3 Using the data-ready signal
	4.4 Using the block data update (BDU) feature
	4.5 Understanding output data
	4.5.1 Examples of output data

	5 Timestamp
	6 Mode 2 - sensor hub mode
	6.1 Sensor hub mode description
	6.2 Sensor hub mode registers
	6.2.1 MASTER_CONFIG (14h)
	6.2.2 STATUS_MASTER (22h)
	6.2.3 SLV0_ADD (15h), SLV0_SUBADD (16h), SLV0_CONFIG (17h)
	6.2.4 SLV1_ADD (18h), SLV1_SUBADD (19h), SLV1_CONFIG (1Ah)
	6.2.5 SLV2_ADD (1Bh), SLV2_SUBADD (1Ch), SLV2_CONFIG (1Dh)
	6.2.6 SLV3_ADD (1Eh), SLV3_SUBADD (1Fh), SLV3_CONFIG (20h)
	6.2.7 DATAWRITE_SLV0 (21h)
	6.2.8 SENSOR_HUB_x registers

	6.3 Sensor hub pass-through feature
	6.4 Sensor hub mode example

	7 Temperature sensor
	7.1 Example of temperature data calculation

	8 Self-test
	8.1 Accelerometer self-test
	8.2 Gyroscope self-test

	9 ISPU
	9.1 Processing cycle and rate configuration
	9.2 Memory mapping
	9.3 ISPU interaction registers
	9.4 Sensor data
	9.5 Configuration
	9.6 Additional inputs
	9.7 Outputs
	9.8 Algorithms
	9.9 Interrupts
	9.10 Memory access
	9.11 Program loading
	9.12 Boot procedure
	9.13 Clock configuration and performance
	9.14 Power consumption

	Appendix A
	 Revision history
	Contents
	List of tables
	List of figures

