
Introduction

This document provides information on the machine learning core feature available in the ASM330LHB. The machine learning
processing capability allows moving some algorithms from the application processor to the MEMS sensor, enabling consistent
reduction of power consumption.
The machine learning processing capability is obtained through decision-tree logic. A decision tree is a mathematical tool
composed of a series of configurable nodes. Each node is characterized by an “if-then-else” condition, where an input signal
(represented by statistical parameters calculated from the sensor data) is evaluated against a threshold.
The ASM330LHB can be configured to run up to 8 decision trees simultaneously and independently. The decision trees are
stored in the device and generate results in the dedicated output registers.
The results of the decision tree can be read from the application processor at any time. Furthermore, there is the possibility to
generate an interrupt for every change in the result in the decision tree.

Figure 1. Machine learning core supervised approach
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1 Machine learning core in the ASM330LHB

The machine learning core (together with the finite state machine) is one of the main embedded features available
in the ASM330LHB. It is composed of a set of configurable parameters and decision trees able to implement
algorithms in the sensor itself.
The kind of algorithms suitable for the machine learning core are those which can be implemented by following
an inductive approach, which involves searching patterns from observations. Some examples of algorithms that
follow this approach are: activity recognition, fitness activity recognition, motion intensity detection, vibration
intensity detection, carrying position recognition, context awareness, false-positive rejection, and so forth.
The idea behind the machine learning core is to use the accelerometer and gyroscope sensor data to compute a
set of statistical parameters selectable by the user (such as mean, variance, energy, peak, zero-crossing, and so
forth) in a defined time window. In addition to the sensor input data, some new inputs can be defined by applying
some configurable filters available in the device.
The machine learning core parameters are called “features” and can be used as input for a configurable decision
tree that can be stored in the device.
The decision tree that can be stored in the ASM330LHB is a binary tree composed of a series of nodes. In each
node, a statistical parameter (feature) is evaluated against a threshold to establish the evolution in the next node.
When a leaf (one of the last nodes of the tree) is reached, the decision tree generates a result that is readable
through a dedicated device register.

Figure 2. Machine learning core in the ASM330LHB
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The machine learning core output data rate can be configured among one of the four available rates from 12.5 to
104 Hz. The bits MLC_ODR in the embedded function register EMB_FUNC_ODR_CFG_C (60h) allow selecting
one of the four available rates as shown in the following table.

Table 1. Machine learning core output data rates

MLC_ODR bits in EMB_FUNC_ODR_CFG_C (60h) Machine learning core output data rate

00 12.5 Hz

01 26 Hz (default)

10 52 Hz

11 104 Hz
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In order to implement the machine learning processing capability of the ASM330LHB, it is necessary to use a
“supervised learning” approach that consists of:
• Identifying some classes to be recognized
• Collecting multiple data logs for each class
• Performing some data analysis from the collected logs to learn a generic rule that allows mapping inputs

(data logs) to outputs (classes to be recognized)
In an activity recognition algorithm, for instance, the classes to be recognized might be: stationary, walking,
jogging, biking, driving, and so forth. Multiple data logs have to be acquired for every class, for example multiple
people performing the same activity.
The analysis on the collected data logs has the purpose of:
• Defining the features to be used to correctly classify the different classes
• Defining the filters to be applied to the input data to improve the performance using the selected features
• Generating a dedicated decision tree able to recognize one of the different classes (mapping inputs to

outputs)
Once a decision tree has been defined, a configuration for the device can be generated by the software tool
provided by STMicroelectronics (described in Section 2  Machine learning core tools). The decision tree runs on
the device, minimizing the power consumption.
Going deeper in detail in the machine learning core feature inside the ASM330LHB, it can be thought of as three
main blocks (Figure 3):
1. Sensor data
2. Computation block
3. Decision tree

Figure 3. Machine learning core blocks
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The first block, called “Sensor data”, is composed of data coming from the accelerometer and gyroscope, which
are built in the device.
The machine learning core inputs defined in the first block are used in the second block, the “Computation block”,
where filters and features can be applied. The features are statistical parameters computed from the input data
(or from the filtered data) in a defined time window, selectable by the user.
The features computed in the computation block are used as input for the third block of the machine learning
core. This block, called “Decision tree”, includes the binary tree that evaluates the statistical parameters
computed from the input data. In the binary tree the statistical parameters are compared against certain
thresholds to generate results (in the example of the activity recognition described above, the results were:
stationary, walking, jogging, biking, and so forth). The decision tree results might also be filtered by an optional
filter called "meta-classifier". The machine learning core results are the decision tree results, which include the
optional meta-classifier.
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The machine learning core memory is organized in a “dynamic” or “modular” way, in order to maximize the
number of computation blocks that can be configured in the device (filters, features, and so forth). A dedicated
tool has been designed to generate the configuration of the ASM330LHB, in order to automatically manage
memory usage. The tool is available in the Unico GUI and it is described later in Section 2  Machine learning core
tools.
The following sections explain in detail the three main blocks of the machine learning core in the ASM330LHB
described in Figure 3.

1.1 Inputs
The ASM330LHB works as a combo (accelerometer + gyroscope) sensor, generating acceleration and angular
rate output data. The 3-axis data of the acceleration and angular rate can be used as input for the machine
learning core. Figure 4 and Figure 5 show the inputs of the machine learning core block in the accelerometer and
gyroscope digital chains. The position of the machine learning core (MLC) block in the two digital chains is the
same for all four connection modes available in the ASM330LHB.

Figure 4. MLC inputs (accelerometer)
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Figure 5. MLC inputs (gyroscope)
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The rate of the input data must be equal to or higher than the machine learning core data rate configurable
through the embedded function register EMB_FUNC_ODR_CFG_C (60h), as described in Table 1.
Example: In an activity recognition algorithm running at 26 Hz, the machine learning core ODR must be selected
at 26 Hz, while the sensor ODRs must be equal to or higher than 26 Hz.
The machine learning core uses the following unit conventions:
• Accelerometer data in [g]
• Gyroscope data in [rad/sec]
To summarize the machine learning core inputs:
• Accelerometer data conversion factor is automatically handled by the device.
• Gyroscope data conversion factor is automatically handled by the device.
An additional input available for sensor data (accelerometer and gyroscope) is the norm. From the 3-axis data,
the machine learning core (in the ASM330LHB) internally computes the norm and the squared norm. These two
additional signals can be used as inputs for machine learning processing.
The norm and the squared norm of the input data are computed with the following formulas:V = x2 + y2 + z2V2 = x2 + y2 + z2
Norm and squared norm data can be used in the decision trees in order to guarantee a high level of program
customization for the user.

Note: The data rate for MLC inputs is set through the MLC_ODR bits. If the sensor ODR is higher than MLC_ODR,
MLC automatically decimates the input data (without any additional filtering).
It is recommended to select MLC_ODR equal to the sensor ODR to avoid decimation of the MLC inputs. Selecting
MLC_ODR lower than the sensor ODR is also possible, but the different frequency response could lower the
accuracy of the MLC solution.
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1.2 Filters
The input data seen in the previous section can be filtered by different kinds of filters available in the machine
learning core logic. The basic element of the machine learning core filtering is a second order IIR filter, as shown
in Figure 6.

Note: The filters available in the MLC block are independent of any other filter available on the device (the filters
described in this section are illustrated in the MLC block of Figure 4 and Figure 5).

Figure 6. Filter basic element

The transfer function of the generic IIR 2nd order filter is the following:H z = b1 + b2z−1 + b3z−21 + a2z−1 + a3z−2
From Figure 1, the outputs can be defined as: y z = H z ⋅ x zy′ z = y z ⋅ Gain
To optimize memory usage, the machine learning core has default coefficients for the different kinds of filters
(high-pass, band-pass, IIR1, IIR2). The machine learning core tool helps in configuring the filter by asking for the
filter coefficients needed after selecting the kind of filter. The following table shows the default values and the
configurable values for the coefficients, depending on the filter type chosen. By setting different coefficients, it is
possible to tune the filter for the specific application.

Table 2. Filter coefficients

Filter type / Coefficients b1 b2 b3 a2 a3 Gain

High-pass filter 0.5 -0.5 0 0 0 1

Band-pass filter 1 0 -1 Configurable Configurable Configurable

IIR1 filter Configurable Configurable 0 Configurable 0 1

IIR2 filter Configurable Configurable Configurable Configurable Configurable 1

The filter coefficient values are expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign
bit; E: 5 exponent bits; F: 10 fraction bits).
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1.2.1 Filter coefficients
The IIR filter coefficients can be computed with different tools, including Matlab, Octave and Python. In Matlab, for
instance, the following function can be used to generate coefficients for a low-pass filter:
[b, a] = butter( N,f_cut / (ODR/2), 'low' )

Where:
• N is the order of the IIR filter (1 for IIR1, 2 for IIR2)
• f_cut is the cutoff frequency [Hz] of the filter
• ODR is the machine learning core data rate [Hz]
• ‘low’ (or ‘high’) is the kind of filter to be implemented (low-pass or high-pass)

Note: It is possible to configure a high-pass filter with the cutoff at half of the bandwidth (ODR/4) without inserting the
coefficients. The machine learning core has some pre-defined coefficients for this configuration.
The following function instead allows generating band-pass filter coefficients through Matlab:
[b,a] = butter(1,[f1 f2]/(ODR/2),'bandpass')

Note: Since only a2, a3 and gain are configurable for a band-pass filter, the b vector should be normalized by setting
gain = b(1). Bandpass filters are generated as first-order filters in Matlab and Python.
Example:
b = [0.2929 0 -0.2929]; a = [1.0 -0.5858 0.4142];
can be written as b = [1 0 -1] and gain = 0.2929.
So the band-pass filter coefficients are:
a2 = -0.5858; a3 = 0.4142; gain = 0.2929.
The following table shows some examples of filter coefficients (most of them considering an ODR of 26 Hz).
When designing high-pass and band-pass IIR filters, consider the stability of the filters in half-precision floating
point. The resolution loss can cause some divergence in the signal if the filters are not very stable.
We recommend using first-order IIR filters when the cutoff frequency (normalized) is below 0.02 [2*f_cutoff/ODR]
or increasing the cutoff frequency.
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Table 3. Examples of filter coefficients

Filter type / Coefficients b1 b2 b3 a2 a3 Gain

High-pass IIR1, f_cut = 1 Hz,

ODR = 26 Hz
0.891725 -0.891725 - -0.783450 - 1

High-pass IIR1, f_cut = 2 Hz,

ODR = 26 Hz
0.802261 -0.802261 - -0.604521 - 1

High-pass IIR1, f_cut = 5 Hz,

ODR = 26 Hz
0.591628 -0.591628 - -0.183257 - 1

High-pass IIR1, f_cut = 10 Hz,

ODR = 26 Hz
0.274968 -0.274968 - 0.450063 - 1

High-pass IIR2, f_cut = 1 Hz,

ODR = 26 Hz
0.8428435 -1.685687 0.8428435 -1.6608344 0.710540 1

High-pass IIR2, f_cut = 2 Hz,

ODR = 26 Hz
0.709560 -1.419120 0.709560 -1.332907 0.505334 1

High-pass IIR2, f_cut = 5 Hz,

ODR = 26 Hz
0.4077295 -0.815459 0.407730 -0.426937 0.203981 1

High-pass IIR2, f_cut = 10 Hz,

ODR = 26 Hz
0.085605 -0.171209 0.085605 1.019146 0.361564 1

Low-pass IIR1, f_cut = 1 Hz,

ODR = 26 Hz
0.108275 0.108275 - -0.783450 - 1

Low-pass IIR1, f_cut = 2 Hz,

ODR = 26 Hz
0.197739 0.197739 - -0.604521 - 1

Low-pass IIR1, f_cut = 5 Hz,

ODR = 26 Hz
0.408372 0.408372 - -0.183257 - 1

Low-pass IIR1, f_cut = 10 Hz,

ODR = 26 Hz
0.725032 0.725032 - 0.450063 - 1

Low-pass IIR2, f_cut = 1 Hz,

ODR = 26 Hz
0.012426 0.024853 0.012426 -1.660834 0.710540 1

Low-pass IIR2, f_cut = 2 Hz,

ODR = 26 Hz
0.043107 0.086213 0.043107 -1.332907 0.505333 1

Low-pass IIR2, f_cut = 5 Hz,

ODR = 26 Hz
0.194261 0.388522 0.194261 -0.426937 0.203981 1

Low-pass IIR2, f_cut = 10 Hz,

ODR = 26 Hz
0.595178 1.190355 0.595178 1.019146 0.361564 1

Band-pass IIR2, f1 = 1.5 Hz, f2 = 5 Hz,

ODR = 26 Hz
0.310375 0 -0.310375 -1.069500 0.379250 1

Band-pass IIR2, f1 = 0.2 Hz, f2 = 1 Hz,

ODR = 100 Hz
0.0236 0 -0.0236 -1.9521 0.9528 1
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1.3 Features
The features are the statistical parameters computed from the machine learning core inputs. The machine
learning core inputs which can be used for features computation are:
• The sensor input data which includes

– Sensor data from the X, Y, Z axes (for example, Acc_X, Acc_Y, Acc_Z, Gyro_X, Gyro_Y, Gyro_Z)
– Norm and squared norm signals of sensor data (Acc_V, Acc_V2, Gyro_V, Gyro_V2)

• The filtered data (for example, high-pass on Acc_Z, band-pass on Acc_V2, and so forth)
All the features are computed within a defined time window, which is also called “window length” since it is
expressed as the number of samples. The size of the window has to be determined by the user and is very
important for the machine learning processing, since all the statistical parameters in the decision tree are
evaluated in this time window. It is not a moving window, features are computed just once for every WL sample
(where WL is the size of the window).
The window length can have values from 1 to 255 samples. The choice of the window length value depends on
the MLC data rate (MLC_ODR bits in the embedded function register EMB_FUNC_ODR_CFG_C (60h)), which
introduces a latency for the generation of the machine learning core result, and in the specific application or
algorithm. In an activity recognition algorithm for instance, it can be decided to compute the features every 2 or 3
seconds, which means that considering sensors running at 26 Hz, the window length should be around 50 or 75
samples respectively.
Some of the feaures in the machine learning core require some additional parameters for the evaluation (for
example, an additional threshold). The following table shows all the features available in the machine learning
core including additional parameters.

Note: The maximum number of features which can be configured in the MLC is 63. Feature values are limited to the
range ±65536.

Table 4. Features

Feature Additional parameter

MEAN -

VARIANCE -

ENERGY -

PEAK-TO-PEAK -

ZERO-CROSSING Threshold

POSITIVE ZERO-CROSSING Threshold

NEGATIVE ZERO-CROSSING Threshold

PEAK DETECTOR Threshold

POSITIVE PEAK DETECTOR Threshold

NEGATIVE PEAK DETECTOR Threshold

MINIMUM -

MAXIMUM -
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1.3.1 Mean
The feature “Mean” computes the average of the selected input (I) in the defined time window (WL) with the
following formula:

1.3.2 Variance
The feature “Variance” computes the variance of the selected input (I) in the defined time window (WL) with the
following formula:

1.3.3 Energy
The feature “Energy” computes the energy of the selected input (I) in the defined time window (WL) with the
following formula:

1.3.4 Peak-to-peak
The feature “Peak-to-peak” computes the maximum peak-to-peak value of the selected input in the defined time
window.

Figure 7. Peak-to-peak
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1.3.5 Zero-crossing
The feature “Zero-crossing” computes the number of times the selected input crosses a certain threshold. This
internal threshold is defined as the sum between the average value computed in the previous window (feature
“Mean”) and hysteresis defined by the user.

Figure 8. Zero-crossing
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1.3.6 Positive zero-crossing
The feature “Positive zero-crossing” computes the number of times the selected input crosses a certain threshold.
This internal threshold is defined as the sum between the average value computed in the previous window
(feature “Mean”) and hysteresis defined by the user. Only the transitions with positive slopes are considered for
this feature.

Figure 9. Positive zero-crossing
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1.3.7 Negative zero-crossing
The feature “Negative zero-crossing”computes the number of times the selected input crosses a certain threshold.
This internal threshold is defined as the sum between the average value computed in the previous window
(feature “Mean”) and hysteresis defined by the user. Only the transitions with negative slopes are considered for
this feature.

Figure 10. Negative zero-crossing
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1.3.8 Peak detector
The feature “Peak detector” counts the number of peaks (positive and negative) of the selected input in the
defined time window.
A threshold has to be defined by the user for this feature, and a buffer of three values is considered for the
evaluation. If the second value of the three values buffer is higher (or lower) than the other two values of a
selected threshold, the number of peaks is increased.
The buffer of three values considered for the computation of this feature is a moving buffer inside the time
window.
The following figure shows an example of the computation of this feature, where two peaks (one positive and
negative) have been detected in the time window.

Figure 11. Peak detector
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1.3.9 Positive peak detector
The feature “Positive peak detector” counts the number of positive peaks of the selected input in the defined time
window.
A threshold has to be defined by the user for this feature, and a buffer of three values is considered for the
evaluation. If the second value of the three values buffer is higher than the other two values of a selected
threshold, the number of peaks is increased.
The buffer of three values considered for the computation of this feature is a moving buffer inside the time
window.
The following figure shows an example of the computation of this feature, where just one peak (positive) has been
detected in the time window.

Figure 12. Positive peak detector
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1.3.10 Negative peak detector
The feature “Negative peak detector” counts the number of negative peaks of the selected input in the defined
time window.
A threshold has to be defined by the user for this feature, and a buffer of three values is considered for the
evaluation. If the second value of the three values buffer is lower than the other two values of a selected
threshold, the number of peaks is increased.
The buffer of three values considered for the computation of this feature is a moving buffer inside the time
window.
The following figure shows an example of the computation of this feature, where just one peak (negative) has
been detected in the time window.

Figure 13. Negative peak detector
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1.3.11 Minimum
The feature “Minimum” computes the minimum value of the selected input in the defined time window.
The following figure shows an example of minimum in the time window.

Figure 14. Minimum
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1.3.12 Maximum
The feature “Maximum” computes the maximum value of the selected input in the defined time window.
The following figure shows an example of maximum in the time window.

Figure 15. Maximum
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1.3.13 Selection of features
The selection of the features to be used for the machine learning core configuration depends on the specific
application.
Considering that the use of too many features may lead to overfitting and too large decision trees, it is
recommended to start first by selecting the four most common features:
• Mean
• Variance
• Energy
• Peak-to-peak
If the performance is not good with these features, and in order to improve the accuracy, other features can be
considered to better separate the classes.
Input data for the features calculation (from the accelerometer, gyroscope) and axes (for example, X, Y, Z, V)
have to be chosen according to the specific application as well. Some classes are strongly correlated with sensor
orientation (that is, applications which use the device carry position), so it is better to use individual axis (X, Y, Z).
Other classes (like walking) are independent of orientation, so it is better to use the norm (V or V2).
Sometimes the basic features (mean, variance, energy, and so forth) might not help in distinguishing the
dominating frequency, so embedded digital filters can be enabled to select a specific region of frequency. Using
the filtered signal, certain classes may be distinguished more precisely. For instance, if the user is walking, the
typical signal is around 1-2 Hz, while if the user is jogging, the typical signal is around 2.5-4 Hz.
The information contribution from a single feature can be evaluated by a measure of how much different classes
are separated (from one another). This analysis can be done in a graphical way, by plotting 1D/2D graphs as
described in the following examples.
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1.3.13.1 Histogram of a single feature (1D plot)
The following figure shows a histogram of the computed values of a single feature for three different classes.
These three classes are reasonably separated, so an important level of information is expected with this feature.
For reference, the computed classification accuracy with this single feature is around 75%.

Figure 16. Distribution of single feature for three different classes
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1.3.13.2 Visualization of two features (2D plot)
The following figure shows a 2D plot related to a 2-class classification problem with the selection of two features:
• Feature 1 on the graph vertical axis
• Feature 2 on the graph horizontal axis
In this case, the strict separation between the two classes is evident:
• Class A in red
• Class B in blue
A good information contribution can be obtained by combining the two features. For reference, the classification
accuracy obtained with this example is more than 95%.

Figure 17. Visualization of two features and two classes
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1.3.13.3 Ranking of features
Different machine learning tools offer automated methods to order features in terms of the information
contribution. This form of output ranking is based on criteria/metrics such as correlation, information gain,
probabilistic distance, entropy and more. An example is given by Weka, which automatically handles the
calculations needed to generate optimal decision trees as indicated in the figure below.

Figure 18. Ranking from automated output tool

Note that different features could share the same information contribution. This can be evaluated again by
visualizing the single feature or by checking the accuracy obtained with the subset of features taken one-by-one,
and together, as explained in previous sections.
A final consideration can be done on the number of features which have been selected. In general, the higher the
number of features selected:
• The higher the risk of overfitting
• The larger the size of the resulting decision tree
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1.4 Decision tree
The decision tree is the predictive model built from the training data which can be stored in the ASM330LHB. The
training data are the data logs acquired for each class to be recognized (in the activity recognition example the
classes might be walking, jogging, driving, and so forth).
The outputs of the computation blocks described in the previous sections are the inputs of the decision tree.
Each node of the decision tree contains a condition, where a feature is evaluated with a certain threshold. If the
condition is true, the next node in the true path is evaluated. If the condition is false, the next node in the false
path is evaluated. The status of the decision tree evolves node by node until a result is found. The result of the
decision tree is one of the classes defined at the beginning of the data collection.

Figure 19. Decision tree node
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The decision tree generates a new result every time window (the parameter "window length" set by the user for
the computation of the features). Window length is expressed as a number of samples. The time window can be
obtained by dividing the number of samples by the data rate chosen for MLC (MLC_ODR):
Time window = Window length / MLC_ODR
For instance, selecting 104 samples for the window length and 104 Hz for the MLC data rate, the obtained time
window is:
Time window = 104 samples / 104 Hz = 1 second
The decision tree results can also be filtered by an additional (optional) filter called "meta-classifier", which is
described in Section 1.5  Meta-classifier.
The machine learning core results (decision tree results filtered or not filtered) are accessible through
dedicated registers in the embedded advanced features page 1 of the ASM330LHB registers (as shown in
Table 5). These registers can be countinuously read (polled) to check the decision tree outputs. The register
MLC_STATUS_MAINPAGE (38h) contains the interrupt status bits of the 8 possible decision trees. These bits
are automatically set to 1 when the corresponding decision tree value changes. Furthermore, the interrupt status
signal generated using these bits can also be driven to the INT1 pin by setting the MLC_INT1 (0Dh) register, or
to the INT2 pin by setting the MLC_INT2 (11h) register (Table 6). Using the interrupt signals, an MCU performing
other tasks or sleeping (to save power), can be awakened when the machine learning core result has changed.
The machine learning core interrupt signal is pulsed by default. The duration of the pulsed interrupt is defined by
the fastest ODR among the machine learning core, finite state machine and sensor ODRs:
interrupt pulse duration = 1 / max(MLC_ODR, FSM_ODR, XL_ODR, GYRO_ODR)

The machine learning core interrupt signal can also be set latched through the bit EMB_FUNC_LIR in the
embedded function register PAGE_RW (17h).
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Table 5. Decision tree results

Register Content

MLC0_SRC (70h) Result of decision tree 1

MLC1_SRC (71h) Result of decision tree 2

MLC2_SRC (72h) Result of decision tree 3

MLC3_SRC (73h) Result of decision tree 4

MLC4_SRC (74h) Result of decision tree 5

MLC5_SRC (75h) Result of decision tree 6

MLC6_SRC (76h) Result of decision tree 7

MLC7_SRC (77h) Result of decision tree 8

Table 6. Decision tree interrupts

Register Content

MLC_STATUS_MAINPAGE (38h) Contains interrupt status bits for changes in the decision tree result

MLC_STATUS (15h) Contains interrupt status bits for changes in the decision tree result

MLC_INT1 (0Dh) Allows routing the interrupt status bits for decision trees to INT1 pin(1)

MLC_INT2 (11h) Allows routing the interrupt status bits for decision trees to INT2 pin(2)
 

1. Routing is established if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.
2. Routing is established if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.
 

1.4.1 Decision tree limitations in the ASM330LHB
The ASM330LHB has limited resources for the machine learning core in terms of number of decision trees, size of
the trees, and number of decision tree results.
Up to 8 different decision trees can be stored in the ASM330LHB, but the sum of the number of nodes for all the
decision trees must not exceed 512 (*). Every decision tree can have up to 256 results in the ASM330LHB.
(*) This number might also be limited by the number of features and filters configured. In general, if using few
filters and features, there is no further limitation on the size of the decision tree. However, when using many filters
and features, the maximum number of nodes for the decision trees is slightly limited. For instance, if the number
of filters configured is 10 and the number of features configured is 50, the maximum number of nodes might be
reduced by 100. The tool informs the user of the available nodes for the decision tree.
The table below summarizes the limitations of the ASM330LHB.

Table 7. Decision tree limitations in the ASM330LHB

ASM330LHB

Maximum number of decision trees 8

Maximum number of nodes (total number for all the decision trees) 512 (*)

Maximum number of results per decision tree 256

Note: When using multiple decision trees, all the parameters described in the previous sections (inputs, filters, features
computed in the time window, the time window itself, and also the data rates) are common for all the decision
trees.
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1.5 Meta-classifier
A meta-classifier is a filter on the outputs of the decision tree. The meta-classifier uses some internal counters in
order to filter the decision tree outputs.
Decision tree outputs can be divided in subgroups (for example, similar classes can be managed in the same
subgroup). An internal counter is available for all the subgroups of the decision tree outputs. The counter for the
specific subgroup is increased when the result of the decision tree is one of the classes in the subgroup and it is
decreased otherwise. When the counter reaches a defined value, which is called “end counter” (set by the user),
the output of the machine learning core is updated. Values allowed for end counters are from 0 to 14.

Table 8. Meta-classifier example

Decision tree result A A A B A B B B A B B B A A A

Counter A

(End counter = 3)
1 2 3 2 3 2 1 0 1 0 0 0 1 2 3

Counter B

(End counter = 4)
0 0 0 1 0 1 2 3 2 3 4 5 4 3 2

Machine learning core result (including meta-classifier) x x A A A A A A A A B B B B A

The previous table shows the effect of filtering the decision tree outputs through a meta-classifier. The first line
of the table contains the outputs of the decision tree before the meta-classifier. Counter A and counter B are the
internal counters for the two decision tree results (“A” and “B”). In the activity recognition example, the result “A”
might be walking and the result “B” jogging. When the internal counter “A” reaches the value 3 (which is the end
counter for counter “A”), there is a transition to result “A”. When the internal counter “B” reaches value 4, there is
a transition to result “B”.
The purpose of the meta-classifier is to reduce the false positives, in order to avoid generating an output which is
still not stable, and to reduce the transitions on the decision tree result.

1.5.1 Meta-classifier limitations in the ASM330LHB
The meta-classifier has a limited number of subgroups, 8 subgroups can be used in the ASM330LHB. Similar
classes may need to be grouped in the same subgroup to use the meta-classifier.

Table 9. Meta-classifier limitations in the ASM330LHB

ASM330LHB

Maximum number of results per decision tree 256

Result subgroups for meta-classifier per decision tree 8

Note: Multiple meta-classifiers can be configured. One meta-classifier is available for any decision tree configured in
the machine learning core.

1.6 Finite state machine interface
The ASM330LHB also provides a configurable finite state machine which is suitable for deductive algorithms and
in particular gesture recognition.
Finite state machines and decision trees can be combined to work together in order to enhance the accuracy of
motion detection.
The decision tree results generated by the machine learning core can be checked by the finite state machine
available in the ASM330LHB; this is possible through the condition CHKDT (described in the finite state machine
application note).
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2 Machine learning core tools

The machine learning core programmability in the device is allowed through a dedicated tool, available as an
extension of the Unico GUI.

2.1 Unico GUI
Unico is the graphical user interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (professional MEMS tool), which enables the communication between the MEMS sensor and
the PC GUI. Unico also has the possibility to run offline, without a motherboard connected to the PC.
Details of the professional MEMS tool board can be found on www.st.com at STEVAL-MKI109V3.
Unico GUI is available in three software packages for the three operating systems supported.
• Windows

– STSW-MKI109W
• Linux

– STSW-MKI109L
• Mac OS X

– STSW-MKI109M
Unico GUI allows visualization of sensor outputs in both graphical and numerical format and allows the user to
save or generally manage data coming from the device.
Unico allows access to the MEMS sensor registers, enabling fast prototyping of register setup and easy testing
of the configuration directly on the device. It is possible to save the current register configuration in a text file
(with .ucf extension) and load a configuration from an existing file. In this way, the sensor can be reprogrammed in
few seconds.
The machine learning core tool available in the Unico GUI abstracts the process of register configuration by
automatically generating configuration files for the device. The user just needs to set some parameters in the GUI
and by clicking a few buttons, the configuration file is already available. From these configuration files, the user
can create his own library of configurations for the device.
Since the machine learning approach requires the collection of data logs, they can be acquired through the
[Load/Save] tab of Unico (Figure 20). For the accelerometer, the checkbox [Acceleration] allows saving data in
[mg]. For the gyroscope, the checkbox [Angular rate] allows saving data in [dps].

Note: When logging data, the [Start] and [Stop] buttons (in the [Load/Save] tab of Unico) must be used properly
in order to avoid logging incorrect data at the beginning or at the end of the acquisition. For instance, when
logging a data pattern for the class "walking", the user should start walking before pressing the button [Start]
and stop walking after pressing the button [Stop]. It is important to select the correct ODR for data logging. If
the final MLC ODR (for example, 26 Hz) is already defined, it is recommended to use the same ODR for data
logging (ODR 26 Hz). If the MLC ODR is not defined, it is recommended to log the data at ODR 104 Hz (which
is the maximum ODR for MLC), and then downsample the data if needed. Depending on the algorithm to be
implemented, different data logs are needed (at least one per class to use the supervised machine learning
approach). It is recommended to have different data logs for each class (for example, 30 data logs per class) in
order to capture some diversity or variation, which can be expected in the final application (for example, different
users, different tests, or different conditions).
If using Unico GUI offline (without connecting the motherboard to the PC), the user, who has already acquired the
data logs, can directly upload them to generate a machine learning core configuration.
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Figure 20. Unico GUI

The collected data logs can then be loaded in the machine learning core tool of Unico, available on the left side of
the GUI, by using the [Data Patterns] tab (Figure 21). An expected result must be assigned to each data pattern
loaded (for instance, in the activity recognition algorithm, the results might be: still, walking, jogging, and so forth).
This assignment is also called "data labeling". The label has to be a set of characters including only letters and
numbers (no special characters and no spaces). It is also possible to load a group of data patterns (by multiple
selections in the folder where the files are located) and assign the label just once for all the files selected.

Figure 21. Machine learning core tool - data patterns

The unit of measurement for the data expected in the [Data Patterns] tab of the machine learning core tool are:
• [mg] (or alternatively [g]) for the accelerometer
• [dps] (or alternatively [mdps]) for the gyroscope
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The conversion from [mg] to [g] for the accelerometer, and [dps] to [rad/s] for the gyroscope, is automatically
managed internally by the machine learning core tool, to allow the machine learning core logic to work with the
correct data ([g] and [rad/s]).
In the configuration tab of the machine learning core tool (Figure 22), all the parameters of the machine learning
core (such as ODR, full scales, window length, filters, features, meta-classifier) can be configured. The tool allows
selecting multiple filters that can be applied to the raw data, and multiple features to be computed from the input
data or from the filtered data. The features computed are the attributes of the decision tree.
When the board is connected and the device already configured, the tool automatically suggests ODRs and full
scales (for accelerometer and gyroscope) according to the current device configuration.

Figure 22. Machine learning core tool - configuration

The [Configuration] tab of the machine learning core tool generates an attribute-relation file (ARFF), which is the
starting point for the decision tree generation process. The decision tree can be generated by different machine
learning tools (Section 2.2).
Once the decision tree has been generated, it can be uploaded to the machine learning core tool in Unico to
complete the generation of the register configuration for the ASM330LHB.
The Unico GUI, by accessing the sensor registers, can read the status of the decision tree outputs, visualize them
together with sensor data, and make it possible to log all the data (sensor outputs and decision tree outputs)
together in the same text file.
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2.2 Decision tree generation
Unico (starting from version 9.8) is able to automatically generate the decision tree, as shown in the following
figure.
Two parameters can be fine-tuned when starting the decision tree generation in Unico:
• The maximum number of nodes, which can be set to make sure the generated tree can fit in the MLC

configuration;
• The confidence factor, for controlling decision tree pruning (by lowering this number, overfitting can be

reduced).

Figure 23. Decision tree generation in Unico

Besides Unico, there are other external machine learning tools able to generate decision trees and some of them
are supported by Unico.
One of the most frequently used tools is Weka, software developed by the University of Waikato (more details
about this software can be found in Appendix A). Other alternative tools are: RapidMiner (Appendix B), Matlab
(Appendix C), Python (Appendix D).
Weka is able to generate a decision tree starting from an attribute-relation file (ARFF). Through Weka it is
possible to evaluate which attributes are good for the decision tree, and different decision tree configurations
can be implemented by changing all the parameters available in Weka. Figure 24 and Figure 25 show the
[Preprocess] and [Classify] tabs of Weka which allow evaluating the attributes and generating the decision tree.
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Figure 24. Weka preprocess

Figure 25. Weka classify

Once the decision tree has been generated, it can be uploaded to the machine learning core tool in Unico, to
complete the generation of the register configuration for the ASM330LHB.
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The machine learning core tool in Unico accepts as input the decision tree files in a textual format (.txt). The
textual file must contain the decision tree in the Weka J48 format (an example of a decision tree is shown in
Figure 26). From the Weka [Classifier output] (Figure 25), the decision tree has to be selected starting from the
first line (first node) or in the RapidMiner format (Appendix B). The last two rows (number of leaves and size of the
tree) are optional. The selected output from Weka has to be copied to a text file.

Figure 26. Decision tree format

If the decision tree has been generated from a different tool, the format must be converted to the Weka J48 format
(or to the RapidMiner format) in order to allow the machine learning core tool in Unico to read the decision tree
correctly.

2.3 Configuration procedure
Figure 27 shows the whole procedure of the machine learning processing, from the data patterns to the
generation of a register setting for the device (ASM330LHB).
As seen in Section 2.1  Unico GUI, the data patterns can be acquired in the [Load/Save] tab of the Unico GUI.
If this is not possible or if the user wants to use some different data patterns, they can still be uploaded in the
machine learning core tool of Unico, with a few limitations:
• Every data pattern has to start with a header line, containing the unit of measurement of the data

– A_X [mg] A_Y [mg] A_Z [mg] G_X [dps] G_Y [dps] G_Z [dps]
• The data after the header line must be separated by “tab” or “space”.
• The order of sensors in the file columns must be accelerometer data (if available), gyroscope data (if

available).
• The order of the axes in the columns of any sensor is X, Y, Z.
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Figure 27. Configuration procedure

WEKA

Decision tree file 
(.txt)

Attributes file 
(.ARFF)

Register Configuration
(.ucf)

Log files 
(data patterns)

Acquire data patterns

Load data patterns in the 
tool, assigning expected 
results (labeling)

Configure filters and 
features to be used

Build the decision tree
(using Unico or external 
tools)

Load the decision tree to 
the tool and assign results 
and meta-classifier

Generate a configuration 
file for the device

External tools supported

Opening the machine learning core tool available in Unico, the data patterns, acquired in the format described
above, can be loaded assigning the expected result for each data log (as shown in the following figure).

Figure 28. Assigning a result to a data pattern

AN5915
Configuration procedure

AN5915 - Rev 1 page 28/57



When all the data patterns have been loaded, the machine learning core parameters can be configured through
the [Configuration] tab. These parameters are ODR, full scales, number of decision trees, window length, filters,
features, and so on (as shown in Figure 29, Figure 30, Figure 31, Figure 32).

Figure 29. Configuration of machine learning core

Figure 30. Configuration of filters

Figure 31. Configuration of features
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Figure 32. ARFF generation

Multiple filters and multiple features can be chosen. The GUI iteratively asks for another filter until the parameter
[End filter configuration] is chosen (Figure 30). All the available features can be easily selected using the
checkboxes (Figure 31).
Once all the features have been configured, the machine learning core tool in Unico generates an ARFF file
(Figure 32), which is the file containing all the features computed from the training data. Figure 33 shows an
example of an ARFF file generated by the machine learning core tool in Unico.
Unico has a built-in tool for decision tree generation which internally uses the ARFF file to generate a decision
tree, however, the ARFF file can also be used in external tools (for instance Weka). The decision tree generated
with the external tool can be imported in Unico.
In some cases, the user must adapt the ARFF file to the file format required by other external tools for decision
tree generation, and also the decision tree must be compatible with the format described in Section 2.2  Decision
tree generation. For more information about the external tools supported, see the Appendix sections.

Figure 33. ARFF file

Before generating or loading the decision tree, Unico also asks for the result values associated to each class
recognized by the decision tree. These values are used as possible values for the MLCx_SRC registers.
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Figure 34. Configuration of results and decision tree

The last step of the configuration process is to configure the [Meta-classifier], which is the optional filter for the
generation of the decision tree results. After that, the tool is ready to generate a configuration for the device
(Figure 35).

Figure 35. Meta-classifier and device configuration
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Once the MLC configuration has been completed, Unico allows loading the .ucf file generated to directly program
the device. The loading feature is available in the [Load/Save] tab of the Unico main window (Figure 37).
Alternatively, at the end of the MLC configuration a checkbox allows directly loading the configuration created on
the device as shown in Figure 36.

Figure 36. Creation of configuration file

Figure 37. Unico load configuration

When the device is programmed, the machine learning core results can be monitored in the [Data] window
of Unico (Figure 38) or in one of the registers tabs containing the machine learning core source registers
(Figure 39).
The .ucf file generated by Unico can also be used for integrating the generated MLC configuration in other
platforms and software (for example, AlgoBuilder, Unicleo, SensorTile.box, and so forth).
From the .ucf file it is also possible to convert the sequence of values to a header file (.h) to be imported in
any C project (for example, driver, firmware, and so on): Unico allows .h file generation (from .ucf files) through
the "C code generation" dedicated tool in the options tab of the Unico main window. An example of using the
generated .h file in a standard C driver is available in [STMems_Standard_C_drivers repository] on GitHub.
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Figure 38. Unico data window

Figure 39. Unico - machine learning core source registers
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Appendix A Weka
Weka is free software developed at the University of Waikato, New Zealand. It cointains a collection of
visualization tools and algorithms for data analysis and predictive modeling, together with graphical user
interfaces for easy access to these functions.
Weka is one of the most popular machine learning tools for decision tree generation. This section contains some
details about this external software, additional details can be found at the links below:
• Weka download
• Weka website
• Weka user guide
All of Weka’s techniques are predicated on the assumption that the data is available as one flat file or relation,
where each data point is described by a fixed number of attributes.
An ARFF (attribute-relation file format) file is an ASCII text file that describes a list of instances sharing a set
of attributes. The ARFF files have two distinct sections, as shown in Figure 40: a header section containing the
attributes (features, classes), and a data section containing all the feature values together with the corresponding
class to be associated to that set of features.

Figure 40. ARFF example

AN5915
Weka

AN5915 - Rev 1 page 34/57

https://www.cs.waikato.ac.nz/ml/weka/downloading.html
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf


Figure 41. Weka GUI Chooser

When launching Weka, the [Weka GUI Chooser] window appears (Figure 41), and the [Explorer] section,
selectable through the first button, is the Weka main user interface.
When selecting the Weka [Explorer] a new interface appears (Figure 42). Several tabs are available in the
[Explorer] interface:
• The [Preprocess] tab has facilities for importing data.
• The [Classify] tab allows applying classification and regression algorithms to the dataset in order to

estimate accuracy of the resulting predictive model and to visualize erroneous predictions.
• The [Cluster] tab gives access to the clustering techniques in Weka.
• The [Associate] tab provides access to association rule learners that attempt to identify all important

interrelationships between attributes in the data.
• The [Select attributes] tab provides algorithms for identifying the most predictive attributes in a dataset.
• The [Visualize] tab shows a scatter plot matrix.
In this appendix section, only the [Preprocess] and [Classify] tabs are described.
The [Preprocess] tab is shown in Figure 42, it allows loading an ARFF file from the [Open file] button.
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Figure 42. Weka Explorer

When the ARFF file has been loaded, the [Preprocess] tab shows all the attributes (features and classes) of the
imported ARFF file. The attributes can be visualized in a graphical way and the user can select the attributes to
be used for the classification.
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Figure 43.  Weka Explorer - Attributes

After choosing the attributes, a classifier can be configured in the [Classify] tab of Weka [Explorer] (Figure 44).
There are many classifiers available in Weka: by choosing the classifier [J48] (under [trees]) a decision tree can
be generated (Figure 45).
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Figure 44. Weka Classify

Figure 45. Weka Classify J48
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Many parameters can be changed in the classifier section (Figure 46), and different decision trees can be
generated by clicking the [Start] button (see Figure 45).

Figure 46. Weka J48 classifier parameters
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All the decision trees generated can be easily compared in terms of:
• Number of nodes
Since the decision tree generated by the J48 algorithm in Weka is a binary tree, the number of nodes can be
obtained by subtracting one from the parameter "Number of Leaves" which appears in the first row just after
the decision tree (see Figure 47. Correctly classified instances). It is also possible to visualize the decision tree
graphically by right-clicking on the [Result list] section on the left part of the tool (where all the models created
can be easily compared).
• Correctly classified instances
It is an estimate of the accuracy of the model created. The result of the model is compared to the result provided
by the labels. Figure 47. Correctly classified instances shows the correctly classified instances of an activity
recognition model.
• Confusion matrix
An NxN table that summarizes how successful the classification model predictions were, that is, the correlation
between the label and the model classification. One axis of a confusion matrix is the label that the model
predicted, and the other axis is the actual label.

Figure 47. Correctly classified instances

Figure 48. Confusion matrix shows an example of a confusion matrix for an activity recognition algorithm with four
classes (stationary, walking, jogging, biking).

Figure 48. Confusion matrix
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Appendix B RapidMiner
RapidMiner is a data science software platform which provides an integrated environment for data preparation,
machine learning, deep learning, text mining, and predictive analytics. It is used for business and commercial
applications as well as for research, education, training, rapid prototyping, and application development and
supports all steps of the machine learning process including data preparation, results visualization, model
validation and optimization.
This appendix describes the process to generate a decision tree starting from an ARFF file, using RapidMiner
Studio. A simple example of a hand-washing detection algorithm is considered for this purpose. After opening
RapidMiner Studio, the main steps are the following:
1. Add the [Open File] operator from the [Operators] window on the left, and drag the operator to the blank

[Process] window as shown in Figure 49.
2. Double-click the [Open File] operator to choose the ARFF file to be loaded.
3. Find the [Read ARFF] operator and drag it to the [Process] window. Then connect the [Read ARFF]

operator to the [Open File] operator as shown in Figure 50.
4. Find the [Set Role] operator and drag it to the [Process] window. Then, double-click the [Set Role]

operator and type the attribute name and target role in the [Parameters] window as shown in Figure 51.
5. Find the [Decision Tree] operator and set the corresponding parameters as shown in Figure 52. You also

need to connect the [Decision Tree] operator to [res].
6. Click the [Run] button (blue triangle icon) in the upper left section of RapidMiner Studio.
7. After the [Run] button has been clicked, the [Results] tab shows the decision tree generated, in terms of

[Graph] (Figure 53) and [Description].
8. In the [Description] section of the decision tree generated (Figure 54) you need to copy the decision tree

to a text file, which can be imported in the MLC tool in Unico.

Figure 49. RapidMiner Studio - Open File
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Figure 50. RapidMiner Studio - Read ARFF

Figure 51. RapidMiner Studio - Set Role
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Figure 52. RapidMiner Studio - Decision Tree operator

Figure 53. RapidMiner Studio - Decision Tree graph
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Figure 54. RapidMiner Studio - Decision Tree description
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Appendix C Matlab
Decision trees for the machine learning core can be generated with Matlab. Dedicated scripts for Matlab are
available at Matlab.
After importing all the scripts in the Matlab workspace, the function [Generate_DecisionTree()] should be called,
specifying two file names (an .arff file containing the features computed by the machine learning core tool in Unico
and a .txt file which contains the decision tree generated):
filename_ARFF = ‘features.arff’;
filename_dectree = ‘decision_tree.txt’;
Generate_DecisionTree(filename_ARFF, filename_dectree);
More details can be found in the README.md file available contained in the [matlab] folder of the GitHub
repository.
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Appendix D Python
Decision trees for the machine learning core can be generated with Python through the the “scikit” package.
Python scripts are available at Python both as a Jupyter notebook (*.ipynb) and as a common Python script
(*.py). More details can be found in the README.md file available contained in the [python] folder of the GitHub
repository.
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Appendix E Glossary
This section contains a glossary of terms used in machine learning. Most of the terms have been taken from
https://developers.google.com/machine-learning/glossary/.

ARFF
An ARFF (attribute-relation file format) file is an ASCII text file that describes a list of instances sharing
a set of attributes. ARFF files were developed by the Machine Learning Project at the Department of
Computer Science of The University of Waikato for use with the Weka machine learning software.

Attribute/feature
An attribute is an aspect of an instance (for example, temperature, humidity). Attributes are often called
features in machine learning. A special attribute is the class label that defines the class this instance
belongs to (required for supervised learning).

Binary
classification

A type of classification task that outputs one of two mutually exclusive classes. For example, a machine
learning model that evaluates email messages and outputs either "spam" or "not spam" is a binary
classifier.

Class
One of a set of enumerated target values for a label. For example, in a binary classification model
that detects spam, the two classes are spam and not spam. In a multi-class classification model that
identifies dog breeds, the classes would be poodle, beagle, pug, and so on.

Classification
model

A type of machine learning model for distinguishing among two or more discrete classes. For example,
a natural language processing classification model could determine whether an input sentence was in
French, Spanish, or Italian.

Classification
threshold

A scalar-value criterion that is applied to a model's predicted score in order to separate the positive
class from the negative class. Used when mapping logistic regression results to binary classification. For
example, consider a logistic regression model that determines the probability of a given email message
being spam. If the classification threshold is 0.9, then logistic regression values above 0.9 are classified
as spam and those below 0.9 are classified as not spam.

Class-imbalanced
dataset

A binary classification problem in which the labels for the two classes have significantly different
frequencies. For example, a disease dataset in which 0.0001 of examples have positive labels and
0.9999 have negative labels is a class-imbalanced problem, but a football game predictor in which 0.51
of examples label one team winning and 0.49 label the other team winning is not a class-imbalanced
problem.

Clipping
A technique for handling outliers. Specifically, reducing feature values that are greater than a set
maximum value down to that maximum value. Also, increasing feature values that are less than a
specific minimum value up to that minimum value.

Confusion matrix
An NxN table that summarizes how successful the classification model predictions were; that is, the
correlation between the label and the model classification. One axis of a confusion matrix is the label that
the model predicted, and the other axis is the actual label.

Cross-validation A mechanism for estimating how well a model generalizes to new data by testing the model against one
or more non-overlapping data subsets withheld from the training set.

Data analysis
Obtaining an understanding of data by considering samples, measurement, and visualization. Data
analysis can be particularly useful when a dataset is first received, before one builds the first model. It is
also crucial in understanding experiments and debugging problems with the system.

Data augmentation

Artificially boosting the range and number of training examples by transforming existing examples to
create additional examples. For example, suppose images are one of your features, but your dataset
doesn't contain enough image examples for the model to learn useful associations. Ideally, you'd add
enough labeled images to your dataset to enable your model to train properly. If that's not possible, data
augmentation can rotate, stretch, and reflect each image to produce many variants of the original picture,
possibly yielding enough labeled data to enable excellent training.

Data set or dataset A collection of examples.

Decision boundary The separator between classes learned by a model in a binary class or multi-class classification
problems.

Decision threshold Synonym for classification threshold.

Decision tree A model represented as a sequence of branching statements.

Discrete feature A feature with a finite set of possible values. For example, a feature whose values may only be animal,
vegetable, or mineral is a discrete (or categorical) feature. Contrast with continuous feature.

Discriminative
model

A model that predicts labels from a set of one or more features. More formally, discriminative models
define the conditional probability of an output given the features and weights.

AN5915
Glossary

AN5915 - Rev 1 page 47/57

https://developers.google.com/machine-learning/glossary/


Downsampling

Overloaded term that can mean either of the following:
• Reducing the amount of information in a feature in order to train a model more efficiently.
• Training on a disproportionately low percentage of over-represented class examples in order to

improve model training on under-represented classes.

Dynamic model A model that is trained online in a continuously updating fashion. That is, data is continuously entering
the model.

Example One row of a dataset. An example contains one or more features and possibly a label. See also labeled
example and unlabeled example.

False negative
(FN)

An example in which the model mistakenly predicted the negative class. For example, the model inferred
that a particular email message was not spam (the negative class), but that email message actually was
spam.

False positive (FP)
An example in which the model mistakenly predicted the positive class. For example, the model inferred
that a particular email message was spam (the positive class), but that email message was actually not
spam.

False positive rate
(FPR)

The x-axis in an ROC curve. The false positive rate is defined as follows:

False positive rate = false positives / (false positives + true negatives)

Feature An input variable used in making predictions.

Feature
engineering

The process of determining which features might be useful in training a model, and then converting raw
data from log files and other sources into said features.

Feature engineering is sometimes called feature extraction.

Feature extraction

Overloaded term having either of the following definitions:
• Retrieving intermediate feature representations calculated by an unsupervised or pre-trained

model for use in another model as input.
• Synonym for feature engineering.

Feature set The group of features your machine learning model trains on. For example, postal code, property size,
and property condition might comprise a simple feature set for a model that predicts housing prices.

Generalization Refers to your model's ability to make correct predictions on new, previously unseen data as opposed to
the data used to train the model.

Ground truth The correct answer. Reality. Since reality is often subjective, expert raters typically are the proxy for
ground truth.

Heuristic A quick solution to a problem, which may or may not be the best solution.

Imbalanced dataset Synonym for class-imbalanced dataset.

Independently
and identically
distributed (i.i.d)

Data drawn from a distribution that doesn't change, and where each value drawn doesn't depend
on values that have been drawn previously. An i.i.d. is the ideal gas of machine learning—a useful
mathematical construct but almost never exactly found in the real world. For example, the distribution of
visitors to a web page may be i.i.d. over a brief window of time; that is, the distribution doesn't change
during that brief window and one person's visit is generally independent of another's visit. However, if
you expand that window of time, seasonal differences in the web page's visitors may appear.

Interference
In machine learning, often refers to the process of making predictions by applying the trained model to
unlabeled examples. In statistics, inference refers to the process of fitting the parameters of a distribution
conditioned on some observed data.

Instance Synonym for example.

Interpretability
The degree to which a model's predictions can be readily explained. Deep models are often non-
interpretable; that is, a deep model's different layers can be hard to decipher. By contrast, linear
regression models and wide models are typically far more interpretable.

J48 An open source Java implementation of the C4.5 algorithm

Label

In supervised learning, the "answer" or "result" portion of an example. Each example in a labeled dataset
consists of one or more features and a label. For instance, in a housing dataset, the features might
include the number of bedrooms, the number of bathrooms, and the age of the house, while the label
might be the house's price. In a spam detection dataset, the features might include the subject line, the
sender, and the email message itself, while the label would probably be either "spam" or "not spam."

Linear regression A type of regression model that outputs a continuous value from a linear combination of input features.
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Machine learning

A program or system that builds (trains) a predictive model from input data. The system uses the learned
model to make useful predictions from new (never-before-seen) data drawn from the same distribution
as the one used to train the model. Machine learning also refers to the field of study concerned with
these programs or systems.

Majority class The more common label in a class-imbalanced dataset. For example, given a dataset containing 99%
non-spam labels and 1% spam labels, the non-spam labels are the majority class.

Matplotlib An open-source Python 2D plotting library. matplotlib helps you visualize different aspects of machine
learning.

Minority class The less common label in a class-imbalanced dataset. For example, given a dataset containing 99%
non-spam labels and 1% spam labels, the spam labels are the minority class.

ML Abbreviation for machine learning.

Model training The process of determining the best model.

Multi-class
classification

Classification problems that distinguish among more than two classes. For example, there are
approximately 128 species of maple trees, so a model that categorized maple tree species would be
multi-class. Conversely, a model that divided emails into only two categories (spam and not spam) would
be a binary classification model.

Multinomial
classification Synonym for multi-class classification.

Negative class

In binary classification, one class is termed positive and the other is termed negative. The positive class
is the thing we're looking for and the negative class is the other possibility. For example, the negative
class in a medical test might be "not tumor." The negative class in an email classifier might be "not
spam." See also positive class.

Neural network A model that, taking inspiration from the brain, is composed of layers (at least one of which is hidden)
consisting of simple connected units or neurons followed by nonlinearities.

Node
(decision tree) A "test" on an attribute.

Noise

Broadly speaking, anything that obscures the signal in a dataset. Noise can be introduced into data in a
variety of ways. For example:
• Human raters make mistakes in labeling.
• Humans and instruments mis-record or omit feature values.

Normalization

The process of converting an actual range of values into a standard range of values, typically -1 to +1 or
0 to 1. For example, suppose the natural range of a certain feature is 800 to 6,000. Through subtraction
and division, you can normalize those values into the range -1 to +1.

See also scaling.

Numerical data Features represented as integers or real-valued numbers.

Outliers

Values distant from most other values. In machine learning, any of the following are outliers:
• Weights with high absolute values.
• Predicted values relatively far away from the actual values.
• Input data whose values are more than roughly 3 standard deviations from the mean.

Outliers often cause problems in model training. Clipping is one way of managing outliers.

Overfitting Creating a model that matches the training data so closely that the model fails to make correct
predictions on new data.

Parameter A variable of a model that the ML system trains on its own.

Performance

Overloaded term with the following meanings:
• The traditional meaning within software engineering. Namely: How fast (or efficiently) does this

piece of software run?
• The meaning within ML. Here, performance answers the following question: How correct is this

model? That is, how good are the model's predictions?

Positive class

In binary classification, the two possible classes are labeled as positive and negative. The positive
outcome is the thing we're testing for. (Admittedly, we're simultaneously testing for both outcomes, but
play along.) For example, the positive class in a medical test might be "tumor." The positive class in an
email classifier might be "spam."

Contrast with negative class.
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Precision
A metric for classification models. Precision identifies the frequency with which a model was correct
when predicting the positive class. That is:

Precision = true positives / (true positives + false positives)

Prediction A model's output when provided with an input example.

Pre-trained model Models or model components that have been already been trained.

Proxy labels

Data used to approximate labels not directly available in a dataset.

For example, suppose you want “is it raining?” to be a Boolean label for your dataset, but the dataset
doesn't contain rain data. If photographs are available, you might establish pictures of people carrying
umbrellas as a proxy label for “is it raining”? However, proxy labels may distort results. For example, in
some places, it may be more common to carry umbrellas to protect against sun than the rain.

Rater A human who provides labels in examples. Sometimes called an "annotator."

Recall

A metric for classification models that answers the following question:

“Out of all the possible positive labels, how many did the model correctly identify?”

That is:

Recall = true positives / (true positives + false negatives)

Regression model A type of model that outputs continuous (typically, floating-point) values. Compare with classification
models, which output discrete values, such as "day lily" or "tiger lily."

Reinforcement
learning

A machine learning approach to maximize an ultimate reward through feedback (rewards and
punishments) after a sequence of actions. For example, the ultimate reward of most games is victory.
Reinforcement learning systems can become expert at playing complex games by evaluating sequences
of previous game moves that ultimately led to wins and sequences that ultimately led to losses.

Representation The process of mapping data to useful features.

ROC curve
ROC = receiver operating characteristic

A curve of true positive rate vs. false positive rate at different classification thresholds.

Scaling

A commonly used practice in feature engineering to tame a feature's range of values to match the range
of other features in the dataset. For example, suppose that you want all floating-point features in the
dataset to have a range of 0 to 1. Given a particular feature's range of 0 to 500, you could scale that
feature by dividing each value by 500.

See also normalization.

Scikit-learn A popular open-source ML platform. See www.scikit-learn.org.

Scoring The part of a recommendation system that provides a value or ranking for each item produced by the
candidate generation phase.

Semi-supervised
learning

Training a model on data where some of the training examples have labels but others don’t. One
technique for semi-supervised learning is to infer labels for the unlabeled examples, and then to train on
the inferred labels to create a new model. Semi-supervised learning can be useful if labels are expensive
to obtain but unlabeled examples are plentiful.

Sequence model A model whose inputs have a sequential dependence. For example, predicting the next video watched
from a sequence of previously watched videos.

Serving A synonym for inferring.

Static model A model that is trained offline.

Stationarity

A property of data in a dataset, in which the data distribution stays constant across one or more
dimensions. Most commonly, that dimension is time, meaning that data exhibiting stationarity doesn't
change over time. For example, data that exhibits stationarity doesn't change from September to
December.

Supervised
machine learning

Training a model from input data and its corresponding labels. Supervised machine learning is
analogous to a student learning a subject by studying a set of questions and their corresponding
answers. After mastering the mapping between questions and answers, the student can then provide
answers to new (never-before-seen) questions on the same topic.

Compare with unsupervised machine learning.

Target Synonym for label.

Training The process of determining the ideal parameters comprising a model.

Training set The subset of the dataset used to train a model.
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Contrast with validation set and test set.

True negative (TN) An example in which the model correctly predicted the negative class. For example, the model inferred
that a particular email message was not spam, and that email message really was not spam.

True positive (TP) An example in which the model correctly predicted the positive class. For example, the model inferred
that a particular email message was spam, and that email message really was spam.

True positive rate
(TPR)

Synonym for recall. That is:

True positive rate = true positives / (true positives + false negatives)

True positive rate is the y-axis in an ROC curve.

Underfitting

Producing a model with poor predictive ability because the model hasn't captured the complexity of the
training data. Many problems can cause underfitting, including:
• Training on the wrong set of features.
• Training for too few epochs or at too low a learning rate.
• Training with too high a regularization rate.
• Providing too few hidden layers in a deep neural network.

Unlabeled example An example that contains features but no label. Unlabeled examples are the input to inference. In
semi-supervised and unsupervised learning, unlabeled examples are used during training.

Unsupervised
machine learning

Training a model to find patterns in a dataset, typically an unlabeled dataset.

The most common use of unsupervised machine learning is to cluster data into groups of similar
examples. For example, an unsupervised machine learning algorithm can cluster songs together based
on various properties of the music. The resulting clusters can become an input to other machine learning
algorithms (for example, to a music recommendation service). Clustering can be helpful in domains
where true labels are hard to obtain. For example, in domains such as anti-abuse and fraud, clusters can
help humans better understand the data.

Another example of unsupervised machine learning is principal component analysis (PCA). For example,
applying PCA on a dataset containing the contents of millions of shopping carts might reveal that
shopping carts containing lemons frequently also contain antacids.

Compare with supervised machine learning.

Validation

A process used, as part of training, to evaluate the quality of a machine learning model using the
validation set. Because the validation set is disjoint from the training set, validation helps ensure that the
model’s performance generalizes beyond the training set.

Contrast with test set.

Validation set
A subset of the dataset—disjoint from the training set—used in validation.

Contrast with training set and test set.

Weka A collection of machine learning algorithms for data mining tasks. It contains tools for data preparation,
classification, regression, clustering, association rules mining, and visualization.
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