
Introduction
This application note describes how to develop an encrypted communication over NFC between a STM32 microntroller and a
smartphone, thanks to the ST25DV-I2C series Dynamic NFC Tags.

The ST25DV-I2C is a dynamic NFC tag IC able to communicate with smartphone and NFC readers, and also with a
microcontroller thanks to its I2C interface. Its fast transfer mode feature speeds up the communication between those two
interfaces.

The following packages are available on www.st.com for this demonstration:
• STSW-ST25DV003 firmware
• STSW-ST25003 Android™ application

 ST25DV-I2C crypto demonstration

AN5323

Application note

AN5323 - Rev 1 - May 2019
For further information contact your local STMicroelectronics sales office.

www.st.com

1 General information

This document is applied to STM32L476 Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5323
General information

AN5323 - Rev 1 page 2/20

2 Cryptographic keys overview

Several cryptographic keys are used in this demonstration.

Figure 1. "ST25DV-I2C Crypto Demo" keys overview

AN5323
Cryptographic keys overview

AN5323 - Rev 1 page 3/20

2.1 Keys used on ST25DV-I2C-DISCO side

Table 1. ST25DV-I2C-DISCO ECC key pair

Key name ST25DV-I2C-DISCO ECC key pair

Type Elliptic curve cryptography (ECC) key pair based on the curve 'prime256v1'.

Creation Keys are part of the ST25DV-I2C-DISCO firmware. The public key is signed by the manufacturer to prove its
authenticity.

Purpose
Asymmetric keys used when communicating with the Android™ phone. Both devices exchange their public key.
Then they combine their own private key with the public key of the peer device to build a shared secret (ECDH).
An AES session key is derived from this shared secret and a random number.

Table 2. ST25DV-I2C-DISCO AES session key

Key name ST25DV-I2C-DISCO AES session key

Type AES GCM key of 256 bits.

Creation
Session key created every time a ST25DV-I2C-DISCO board is tapped. A shared secret between the Android
phone and the ST25DV-I2C-DISCO is established thanks to Diffie Hellman (ECDH). A session key is derived from
the shared secret and a random number.

Purpose Key used to encrypt all the exchanges between the Android phone and the ST25DV-I2C-DISCO. The same
session key is created by the Android phone.

2.2 Keys used on Android side

Table 3. Android ECC key pair

Key name Android ECC key pair

Type ECC key pair based on the curve 'prime256v1'

Creation Key pair created once, the first time that user ever launches this application. It is stored encrypted by the AES
KeyStore key in the Android phone's shared preferences.

Purpose
Asymmetric keys used when communicating with the ST25DV-I2C-DISCO. Both devices exchange their public
key. Then they combine their own private key with the public key of the peer device to build a shared secret
(ECDH). An AES session key is derived from this shared secret and a random number.

Table 4. Manufacturer certificate

Key name Manufacturer certificate

Type Certificate containing ECC public key

Creation Certificate stored in the assets of the Android application.

Purpose This certificate is used by the Android application to check that the public key received from the ST25DV-I2C-
DISCO is signed by the manufacturer.

AN5323
Keys used on ST25DV-I2C-DISCO side

AN5323 - Rev 1 page 4/20

Table 5. Android AES session key

Key Name Android AES session key

Type AES GCM key of 256 bits.

Creation
Session Key created every times user taps a ST25DV-I2C-DISCO board. A shared secret between the Android
phone and the ST25DV-I2C-DISCO is established thanks to Diffie Hellman (ECDH). A session key is derived from
the shared secret and a random number.

Purpose Key used to encrypt all the exchanges between the Android phone and the ST25DV-I2C-DISCO. The same
session key is created by the ST25DV-I2C-DISCO board.

Table 6. Android KeyStore key

Key name Android KeyStore key

Type AES CBC key of 256 bits.

Creation Key created once, the first time that user ever launches this application.

Purpose

Key used to encrypt and decrypt the ECC key pair when it is saved in the Android phone shared preferences.
This key is stored in Android KeyStore so nobody can retrieve it (only the "ST25DV-I2C Crypto Demo" application
can use it).

This is the master key of this application. The application cannot be used without it.

AN5323
Keys used on Android side

AN5323 - Rev 1 page 5/20

3 Keys management

Different methods can be implemented to provision the keys, depending on the use cases.
In the "ST25DV-I2C Crypto Demo", the first user of the ST25DV-I2C-DISCO board becomes the "Authorized
User" of the product and nobody else is allowed to retrieve data or configure the product. The ECC public keys
are used to identify the "Authorized User" and the ST25DV-I2C-DISCO. A login is also provided by the
"Authorized User".
In the "ST25DV-I2C Crypto Demo", the ECC key pairs are provisioned in the following way:
• For the ST25DV-I2C-DISCO, the ECC key pair is part of the firmware flashed into the program memory

(including a manufacturer digital signature of the public key).
• For the smartphone, the ECC key pair is created when first launched, and kept forever.

This key provisioning method may apply for instance to sensors measuring personal data that are later
synchronized with a smartphone. In that use case, the user pairs its smartphone with the device before usage,
and its personal data is only accessible by this smartphone. Additionally the Android application can be
configured to require a user authentication: fingerprint or pin code.
More complex use cases may be required, for instance it is possible to implement a multi-users system. The
"Authorized User" can add some other users (identified by a login and an ECC public key), that require to use this
product. The mechanism used for authentication remains the same. The only difference is that the microcontroller
must save the login and public keys of several users (whereas it only saves the "Authorized User" credentials in
this demonstration).
Another use case is, for a company, to sign the ECC public key of the Android phone. The device only accepts to
communicate with a phone whose public key is signed by the manufacturer. For example, a gas counter
containing a ST25DV-I2C series Dynamic NFC Tag and a STM32 microcontroller. A technician from the gas
company may want to setup a secure connection with the microcontroller to configure the gas counter or retrieve
data. The microcontroller accepts the connection only if the ECC public key contained in the technician Android
phone is signed by the manufacturer of the gas counter.

AN5323
Keys management

AN5323 - Rev 1 page 6/20

4 Android™

4.1 Conscrypt crypto library

The "ST25DV-I2C Crypto Demo" application is using Conscrypt as the Java™ Security provider. Conscrypt is
provided by Google®. It uses BoringSSL to provide cryptographic primitives for Java applications on Android.
Another widely used cryptographic library on Android is Bouncy Castle. However, the Bouncy Castle
implementations of many algorithms are deprecated in Android 9.

4.2 Android KeyStore

The Android KeyStore is used to store sensitive information like cryptographic keys. The private key of Android
ECC key pair must be stored in a secure place because anyone who get it, can use it to access the ST25DV-I2C-
DISCO board.
This ECC key pair is usually created directly in the Android KeyStore. By this way, only the program who created
it is able to use it for cryptographic operations and the key pair is non-exportable. This scheme is perfect when
using the key to encrypt, decrypt or sign but it does not able to combine keys with algorithms like ECDH, so a
workaround is needed for this purpose.
The Android ECC pair is stored encrypted in the "Android Shared Preferences". The encryption is done with a
master key called AES KeyStore key created directly in the Android KeyStore. The "ST25DV-I2C Crypto Demo"
application is the only one having access to this master key so it is the only one that is able to decrypt the Android
ECC key pair available in the shared preferences.

Note: The AES session key is created every times the user tap the ST25DV-I2C-DISCO board so it is not stored in the
non-volatile memory.

AN5323
Android™

AN5323 - Rev 1 page 7/20

5 ST25DV-I2C-DISCO firmware

5.1 STM32 security features

The ST25DV-I2C-DISCO motherboard embeds a STM32L476 device which provides several protection
mechanisms that are leveraged to protect sensible code such as the keys or the cryptographic processing.
Following protections are available:
• Code write protection is used to prevent any change in code ensuring the security.
• Code readout protection restricts access of the Flash memory and SRAM to user execution mode, when the

MCU has booted from Flash memory (no access in debug mode or if the MCU boots from another memory).
• Proprietary Code readout protection prevents any data access to part of the code stored in Flash memory,

this is used to prevent any access to the protected keys (only accessible by executing a dedicated getter
function).

• The firewall is able to reset the MCU in case a protected memory (Flash memory or SRAM) is accessed
while firewall is enabled. A specific call gate sequence must be executed to access the protected areas. The
Firewall cannot be disabled once it has been enabled.

• Memory protection unit: the MPU is used to make an embedded system more robust by splitting the memory
map for Flash memory and SRAMs into regions having their own access rights. In the "ST25DV-I2C Crypto
Demo", MPU is configured in order to ensure that no other code is executed from any memories during code
execution.

• Tamper: the anti-tamper protection is used to detect physical tampering actions on the device and to take
related counter measures. In case of tampering detection, the application example forces a reboot.

• Independent watchdog: IWDG is a free-running down-counter. Once running, it cannot be stopped. It must
periodically refresh before it causes a reset. This mechanism control execution duration.

• Random number generator is used to provide reliable random numbers for cryptographic processing.

These security features are available for other STM32 families, contact ST support to find the suitable STM32
MCU for user application.
The "ST25DV-I2C Crypto Demo" only uses native STM32 protections against outer and inner attacks to prevent
compromising sensible data. For a higher level of security, an addition of an STSAFE secure element provides
secure functions such as:
• Authentication
• TLS secure channel key establishment
• Data and certificate storage
• Signature verification

More information is available on www.st.com.

5.2 Security implementation in firmware

5.2.1 Firmware overview
The "ST25DV-I2C Crypto Demo" firmware reuses part of the X-Cube SBSFU software package (available on
www.st.com) to enable the STM32 features (such as Firewall, Readout protection).
The "ST25DV-I2C Crypto Demo" firmware is divided in two different projects/binaries:
• The "Secure Engine"
• The "ST25DV-I2C Crypto Demo", above the "Secure Engine" binary

5.2.2 "Secure Engine" firmware: SECoreBin
The SECoreBin library is built around the se_crypto_services.c file which handles all the required cryptographic
operations, described hereafter.
Other files in the library are reused from the SBSFU example, and they structure the firmware so it can be
protected by STM32 firewall IP and readout protections, mainly:
• A Call gate entry mechanism is provided to only allow legitimate cryptographic instructions from the

application to pass the firewall. Interruptions are disabled during secure processing.

AN5323
ST25DV-I2C-DISCO firmware

AN5323 - Rev 1 page 8/20

• The ECC keys and public key signature are embedded in the executed code, and can thus be protected by
the proprietary code readout protection (no data access to this section is allowed).

• The computed "Shared Secret" and the "Session key" are isolated in a dedicated SRAM area which is also
protected by the firewall (same for the "Secure Engine" execution stack).

The "Secure Engine" module uses the STM32 cryptographic library (see Section 5.2.4 STM32 cryptographic
library) to perform the low level cryptographic processing.
All accesses to the "Secure Engine" are performed by calling the SE_CallGate function, providing a service ID
and the associated parameters. The function returns 0 (SE_ERROR) in case of failure, or a non-zero value for a
success (SE_SUCCESS)
Following tables describe the services provided by the "Secure Engine" module.

Table 7. SE_INIT_ID

ID SE_INIT_ID

Parameters uint32_t SystemCoreClock: the system core clock frequency

Description
Initialize the required crypto peripherals on the STM32L476: the CRC and the random number generator (RNG).

SystemCoreClock is required to setup a local Tick function.

Table 8. SE_CRYPTO_GENERATE_AES_KEY_ID

ID SE_CRYPTO_GENERATE_AES_KEY_ID

Parameters uint8_t* publicKey: A pointer to a 65 bytes buffer, storing the peer device public key

Description
Combine the peer device public key and the firmware private key (running the elliptic curve Diffie Hellman
method) to get a 256 bit key, used as a "Shared Secret" in the demonstration. It relies on the STM32 Crypto
library function ECCgetPointCoordinate.

Table 9. SE_CRYPTO_DERIVE_KEY_ID

ID SE_CRYPTO_DERIVE_KEY_ID

Parameters
uint8_t* salt: pointer to the buffer used to return the 32 bytes of random data that has been used for the
derivation. salt size must be at least 32 bytes.

uint32_t* length: pointer to return the number of bytes of the salt (must be 32).

Description
This method defines a 32 bytes random number (salt) and uses it to derive, from the Shared Secret, the Session
Key. The random 32 bytes salt, has to be communicated to the peer device in order for it to do the same
derivation and get the same Session Key.

Table 10. SE_CRYPTO_KEY_AVAILABLE_ID

ID SE_CRYPTO_KEY_AVAILABLE_ID

Parameters

Crypto_Key_Status_t* keyStatus: The current AES key status

CRYPTO_KEY_STATUS_UNDEF = 0, crypto service has not been initialized yet

CRYPTO_NO_KEY = 1, no Shared Secret computed yet

CRYPTO_SHARED_SECRET_DEFINED = 2, a Shared Secret has been computed

CRYPTO_SESSION_KEY_DEFINED = 3, a session key has been derived from the Shared Secret

Description Getter for the AES Key status. Used in the "ST25DV-I2C Crypto Demo" to know if a "Shared Secret" has already
been defined.

AN5323
Security implementation in firmware

AN5323 - Rev 1 page 9/20

Table 11. SE_CRYPTO_RESET_KEY_ID

ID SE_CRYPTO_RESET_KEY_ID

Parameters

Crypto_Key_Status_t status: the expected status to reset

CRYPTO_KEY_STATUS_UNDEF = 0, crypto service has not been initialized yet

CRYPTO_NO_KEY = 1, no Shared Secret computed yet

CRYPTO_SHARED_SECRET_DEFINED = 2, Shared Secret computed

CRYPTO_SESSION_KEY_DEFINED = 3, a session key has been derived from Shared Secret

Description This method allows the application to reset the Shared Secret and session key. If status is greater than current
status, nothing is done. Shared Secret and session keys are erased from memory if new status requires it.

Table 12. SE_CRYPTO_ENCRYPT_ID

ID SE_CRYPTO_ENCRYPT_ID

Parameters

uint8_t* data: pointer on the data to encrypt

uint32_t length: number of bytes to encrypt

uint8_t* enc_data: pointer to the buffer to be used for encrypted data. enc_data size must be at least length + 28
bytes.

int32_t* enc_length: pointer to return the number of bytes of the encrypted data (includes 12 bytes of IV and 16
bytes of GMAC)

Description Defines the initialization vector nonce, encrypts the provided data and computes the GMAC, using the STM32
Crypto library AES_GCM_Encrypt_Init, AES_GCM_Encrypt_Append, AES_GCM_Encrypt_Finish functions.

Table 13. SE_CRYPTO_DECRYPT_ID

ID SE_CRYPTO_DECRYPT_ID

Parameters

uint8_t* data: pointer on the data to decrypt

uint32_t length: number of bytes to decrypt (starting by 12 bytes of the IV and ending with the 16 bytes of
GMAC)

uint8_t* dec_data: pointer to the buffer to be used for decrypted data. dec_data size must be at least length - 28
bytes.

int32_t* dec_length: pointer to return the number of bytes of the decrypted data

Description Extracts the initialization vector, decrypts the provided data and checks the GMAC validity, using the STM32
Crypto library AES_GCM_Decrypt_Init, AES_GCM_Decrypt_Append, AES_GCM_Decrypt_Finish functions.

Table 14. SE_CRYPTO_HASH_ID

ID SE_CRYPTO_HASH_ID

Parameters

uint8_t* data: pointer on the data to be used as an input for the Hash

uint32_t length: number of bytes to be considered in data buffer

uint8_t* hash_data: pointer to the buffer to be used for the hash value. hash_data size must be at least 32 bytes.

int32_t* hash_length: pointer to return the number of bytes of the hash.

Description Generates a SHA256 Hash value from the given data, using the STM32 Crypto library SHA256_Init,
SHA256_Append, SHA256_Finish functions.

AN5323
Security implementation in firmware

AN5323 - Rev 1 page 10/20

Table 15. SE_CRYPTO_GET_RANDOM_NUMBER_ID

ID SE_CRYPTO_GET_RANDOM_NUMBER_ID

Parameters Crypto_Random_Number_t pointer (16 bytes buffer)

Description Uses the random number generator (RNG) peripheral of the STM32L476 to set 16 bytes with random values.

Table 16. SE_CRYPTO_GET_PUBLIC_KEY_ID

ID SE_CRYPTO_GET_PUBLIC_KEY_ID

Parameters uint8_t * publicKey: 65 bytes buffer used to store the Public Key

Description Executes a function to retrieve the ECC public key

Table 17. SE_CRYPTO_GET_PUBLIC_KEY_SIGNATURE_ID

ID SE_CRYPTO_GET_PUBLIC_KEY_SIGNATURE_ID

Parameters uint8_t * publicKeySig: 71 bytes buffer used to store the Public Key Signature

Description Executes a function to retrieve the ECC public key signature

Table 18. SE_CRYPTO_GET_LOGIN_ID

ID SE_CRYPTO_GET_LOGIN_ID

Parameters Crypto_AuthenticationEnv_t * auth: a pointer to an authentication structure

Description
Reads the authentication data stored in the Flash memory and returns it in "auth".

The authentication structure embeds the peer device login and its associated PublicKey.

Table 19. SE_CRYPTO_SET_LOGIN_ID

ID SE_CRYPTO_SET_LOGIN_ID

Parameters Crypto_AuthenticationEnv_t * auth: a pointer to an authentication structure

Description
Stores the provided authentication data in the Flash memory.

The authentication structure embeds the peer device login and its associated PublicKey.

Table 20. SE_LOCK_RESTRICT_SERVICES

ID SE_LOCK_RESTRICT_SERVICES

Parameters None

Description Restrict the "Secure Engine" services.

AN5323
Security implementation in firmware

AN5323 - Rev 1 page 11/20

5.2.3 "ST25DV-I2C Crypto Demo" application layer
This part of the firmware implements the "ST25DV-I2C Crypto Demo" itself, managing the protocol and transfer
over NFC, and relying on the "Secure Engine" for cryptographic processing.
It reuses some parts of the X-Cube SBSFU firmware:
• The boot procedure, including security checks
• The "Secure Engine" call gate API, to interact with the "Secure Engine" while the firewall is enabled
• The Target protection module, which enables the different protections available on the STM32.

By default, only the firewall and the MPU protections are enabled (SFU_FWALL_PROTECT_ENABLE and
SFU_MPU_PROTECT_ENABLE macros defined in main.h). It may be useful to unset the firewall protection for
debugging (as the firewall resets the STM32 each time the debugger tries to access protected code or data).
Other STM32 protections can be enabled by defining the corresponding macro:
• SFU_WRP_PROTECT_ENABLE to apply write protections
• SFU_RDP_PROTECT_ENABLE to apply readout protections
• SFU_PCROP_PROTECT_ENABLE to apply proprietary readout protections
• SFU_MPU_PROTECT_ENABLE to enable the memory protection unit
• SFU_FWALL_PROTECT_ENABLE to enable the firewall (for full protection WRP, RDP – level2 - & PCROP

must be set)
• SFU_TAMPER_PROTECT_ENABLE to use tamper protection
• SFU_DAP_PROTECT_ENABLE to disable debug pins
• SFU_DMA_PROTECT_ENABLE to disable DMA
• SFU_IWDG_PROTECT_ENABLE to enable independent watchdog

For production, please follow the instructions:
1. Activate all required security protections: SFU_xxx_PROTECT_ENABLE
2. Deactivate verbose mode: SFU_VERBOSE_DEBUG_MODE
3. Deactivate SFU_FWIMG_BLOCK_ON_ABNORMAL_ERRORS_MODE
4. Deactivate SECBOOT_OB_DEV_MODE
5. Activate SFU_FINAL_SECURE_LOCK_ENABLE to configure RDP level 2
Read Protection Level 2 is mandatory to achieve the highest level of protection and to implement a "Root of
Trust".
It is user’s responsibility to activate it in the final software to be programmed during the product manufacturing
stage.
In production mode, the boot checks the option byte values (RDP, WRP and PCROP) and blocks execution in
case a wrong configuration is detected.

5.2.4 STM32 cryptographic library
The "ST25DV-I2C Crypto Demo" "Secure Engine" relies on the STM32 cryptographic library in X-CUBE-
CRYPTOLIB package (available on www.st.com).
This library runs on all STM32 series with the firmware implementation and for dedicated devices some
algorithms are supported with hardware acceleration to optimize the performance and the footprint.

Note: This library provides a random number generation API that can be used on STM32 not having hardware
implementation of RNG.
The supported Crypto algorithms are (only the algorithms in bold font are used in the "ST25DV-I2C Crypto
Demo"):
• AES-128, AES-192, AES-256 bits:

– ECB (Electronic Codebook Mode)
– CBC (cipher-block chaining) with support for ciphertext stealing
– CTR (counter mode)
– CFB (cipher feedback)
– OFB (output feedback)
– CCM (counter with CBC-MAC)
– GCM (Galois counter mode)

AN5323
Security implementation in firmware

AN5323 - Rev 1 page 12/20

– CMAC
– KEY WRAP
– XTS (XEX-based tweaked-code book mode with cipher text stealing)

• ARC4
• DES, TripleDES:

– ECB (electronic code book mode)
– CBC (cpher-block chaining)

• HASH functions with HMAC support:
– MD5
– SHA-1
– SHA-224
– SHA-256
– SHA-384
– SHA-512

• ChaCha20
• Poly1305
• CHACHA20-POLY1305
• Random engine based on DRBG-AES-128
• RSA signature functions with PKCS#1v1.5
• RSA encryption/decryption functions with PKCS#1v1.5
• ECC (elliptic curve cryptography):

– Key generation
– Scalar multiplication (the base for ECDH)
– ECDSA

• ED25519
• Curve25519

5.2.5 "Secure Engine" and demonstration footprint
The following table shows the "ST25DV-I2C Crypto Demo" firmware code footprint.
The "Secure Engine" module numbers only consider the "Secure Engine" part of the firmware, and the main
contributor to the data footprint is the isolated and protected stack of 2 KBytes.
The "ST25DV-I2C Crypto Demo" minimum set of feature disables the display and the picture transfer, which
requires a large amount of code and data, while being useless on a real application. It can be compiled by having
the CRYPTO_DEMO_MINIMUM_FEATURE macro defined.
The "ST25DV-I2C Crypto Demo" full features provides the number for the global demonstration.
The total lines provide numbers for "ST25DV-I2C Crypto Demo" including the "Secure Engine".

Table 21. "ST25DV-I2C Crypto Demo" firmware memory usage

Module Code and read-Only Data

Secure Engine 28.6 KBytes 2.3 KBytes

"ST25DV-I2C Crypto Demo" firmware with minimum set of features (without picture/
display support) 61.5 KBytes 5.7 KBytes

Total (minimum features) 90 KBytes 8 KBytes

"ST25DV-I2C Crypto Demo" firmware with full features (with pictures and display) 149 KBytes 81.5 KBytes

Total (full feature) 177.6 KBytes 83.8 KBytes

AN5323
Security implementation in firmware

AN5323 - Rev 1 page 13/20

5.3 Configuring the keys

5.3.1 Generating keys and signature
Several security elements must be defined in the fimware to run the "ST25DV-I2C Crypto Demo" security
scheme:
• An ECC key pair (in the "ST25DV-I2C Crypto Demo", the prime256v1 elliptic curve is used).
• A digital signature of the public key, signed using the manufacturer key (a manufacturer key has been

specifically created for the demo).

Openssl or a similar tool can be used to generate each of these elements.
Generate the key pair:

openssl ecparam -name prime256v1 -genkey -noout -out ecc_keys.pem

See the generated keys:

openssl ec -in ecc_keys.pem -text

The public key, displayed by the previous command, needs then to be formatted as a binary file and this binary
file must be signed with the manufacturer key:

openssl dgst -sha256 -sign <Manufacturer secret key as a PEM file> -hex -out publicKeySignatu
re.txt <Public key in binary format>

The publicKeySignature.txt file contains a valid digital signature for the ECC public key in a DER format (hex /
encapsulated format).

5.3.2 Implementing keys in firmware
The private key, the public key and its digital signature must be implemented as executable code such as in the
se_key.s file (in the SECoreBin project).
For instance:

EXPORT SE_ReadKey
SE_ReadKey
PUSH {R4-R11}
MOVW R4, #0x1ec5
MOVT R4, #0x2dae
MOVW R5, #0x7d68
MOVT R5, #0x41ce
MOVW R6, #0x5955
MOVT R6, #0xfa87
MOVW R7, #0x42ff
MOVT R7, #0x93bc
MOVW R8, #0xd035
MOVT R8, #0xcd9f
MOVW R9, #0x3ec5
MOVT R9, #0x6b20
MOVW R10, #0xb9c2
MOVT R10, #0x2e38
MOVW R11, #0x4033
MOVT R11, #0xc4f2
STM R0, {R4-R11}
POP {R4-R11}
BX LR

Note: The MOVT/MOVW instructions are little endian on STM32 (byte order must be reversed).
With this implementation the keys can be protected by the "Proprietary Code" readout protection of the STM32
(PCROP is enabled for the corresponding code section).

AN5323
Configuring the keys

AN5323 - Rev 1 page 14/20

6 Frequently asked questions

• Can someone use the login and the public key sent by the Android phone to get access to the ST25DV-I2C-
DISCO data?
No.
The main point is to protect access to the private keys used by the Android phone and the ST25DV-I2C-
DISCO board. Someone spying the NFC connection can see the login used and the public keys exchanged
but cannot get the corresponding private keys. Without the private keys, the hacker cannot find the "Shared
Secret", and neither can find the AES session key derived from the "Shared Secret"; so its authentication
fails.

• What is the Login used for?
Basically, the exchange of the public key is enough. This public key is in binary format so adding a "Login"
makes it more explicit when the access is granted or refused to a phone. The phone model is used as the
"Login" name.

• When doing the key exchange, is there a risk of “Man in the Middle” attack?
No.
The comunication is protected against “Man in the middle” attack because the Android phone checks that
the STM32 public key is signed by the manufacturer of the device. If there was a malicious person between
the Android phone and the STM32 (which is very unlikely when using an NFC connection), the hacker can
replace the STM32 public key by its own public key but this key is not signed by the manufacturer so it is not
accepted by the Android phone.

AN5323
Frequently asked questions

AN5323 - Rev 1 page 15/20

Revision history

Table 22. Document revision history

Date Version Changes

27-May-2019 1 Initial release.

AN5323

AN5323 - Rev 1 page 16/20

Contents

1 General information .2

2 Cryptographic keys overview .3

2.1 Keys used on ST25DV-I2C-DISCO side . 4

2.2 Keys used on Android side . 4

3 Keys management .6

4 Android™ .7

4.1 Conscrypt crypto library . 7

4.2 Android KeyStore . 7

5 ST25DV-I2C-DISCO firmware .8

5.1 STM32 security features . 8

5.2 Security implementation in firmware . 8

5.2.1 Firmware overview . 8

5.2.2 "Secure Engine" firmware: SECoreBin . 8

5.2.3 "ST25DV-I2C Crypto Demo" application layer . 12

5.2.4 STM32 cryptographic library . 12

5.2.5 "Secure Engine" and demonstration footprint . 13

5.3 Configuring the keys . 14

5.3.1 Generating keys and signature . 14

5.3.2 Implementing keys in firmware . 14

6 Frequently asked questions. .15

Revision history .16

AN5323
Contents

AN5323 - Rev 1 page 17/20

List of tables
Table 1. ST25DV-I2C-DISCO ECC key pair . 4
Table 2. ST25DV-I2C-DISCO AES session key . 4
Table 3. Android ECC key pair . 4
Table 4. Manufacturer certificate . 4
Table 5. Android AES session key . 5
Table 6. Android KeyStore key. 5
Table 7. SE_INIT_ID. 9
Table 8. SE_CRYPTO_GENERATE_AES_KEY_ID . 9
Table 9. SE_CRYPTO_DERIVE_KEY_ID . 9
Table 10. SE_CRYPTO_KEY_AVAILABLE_ID . 9
Table 11. SE_CRYPTO_RESET_KEY_ID . 10
Table 12. SE_CRYPTO_ENCRYPT_ID. 10
Table 13. SE_CRYPTO_DECRYPT_ID. 10
Table 14. SE_CRYPTO_HASH_ID. 10
Table 15. SE_CRYPTO_GET_RANDOM_NUMBER_ID . 11
Table 16. SE_CRYPTO_GET_PUBLIC_KEY_ID . 11
Table 17. SE_CRYPTO_GET_PUBLIC_KEY_SIGNATURE_ID . 11
Table 18. SE_CRYPTO_GET_LOGIN_ID . 11
Table 19. SE_CRYPTO_SET_LOGIN_ID . 11
Table 20. SE_LOCK_RESTRICT_SERVICES . 11
Table 21. "ST25DV-I2C Crypto Demo" firmware memory usage . 13
Table 22. Document revision history . 16

AN5323
List of tables

AN5323 - Rev 1 page 18/20

List of figures
Figure 1. "ST25DV-I2C Crypto Demo" keys overview . 3

AN5323
List of figures

AN5323 - Rev 1 page 19/20

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

AN5323

AN5323 - Rev 1 page 20/20

http://www.st.com/trademarks

	Introduction
	1 General information
	2 Cryptographic keys overview
	2.1 Keys used on ST25DV-I2C-DISCO side
	2.2 Keys used on Android side

	3 Keys management
	4 Android™
	4.1 Conscrypt crypto library
	4.2 Android KeyStore

	5 ST25DV-I2C-DISCO firmware
	5.1 STM32 security features
	5.2 Security implementation in firmware
	5.2.1 Firmware overview
	5.2.2 "Secure Engine" firmware: SECoreBin
	5.2.3 "ST25DV-I2C Crypto Demo" application layer
	5.2.4 STM32 cryptographic library
	5.2.5 "Secure Engine" and demonstration footprint

	5.3 Configuring the keys
	5.3.1 Generating keys and signature
	5.3.2 Implementing keys in firmware

	6 Frequently asked questions
	Revision history

