

LSM6DSV32X 6-axis IMU with 32g accelerometer and advanced features

Imagine a single component that answers all your needs

Increased security

Processing in the edge, protecting personal data

Fall & shock detection

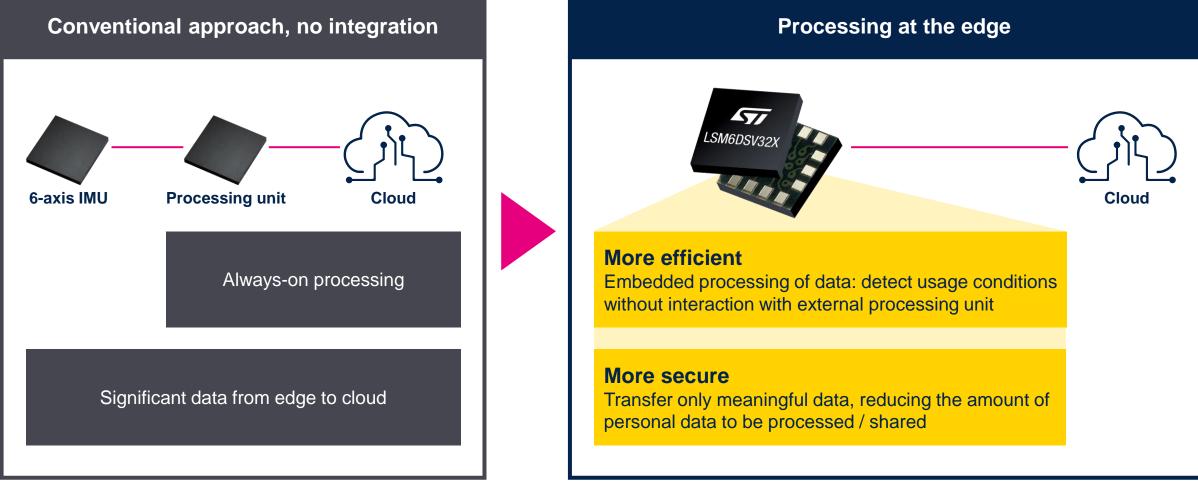
Activity monitoring

Fitness tracking Safety Health monitoring

Detect shock events, free fall and drop height

LSM6DSV32X 6-axis IMU enable is your solution – Efficient, flexible, and available!

Context awareness


Always the right

configuration for each

context

2

LSM6DSV32X Increased performance, efficiency & security

LSM6DSV32X in brief

Smart 32g IMU with processing at the edge for sport, wearable & IoT applications

Mass production

2.5 x 3.0 x 0.83 mm

High full scale IMU

- Accelerometer @ 32g, Gyroscope @ 4000 dps
- Low noise accelerometer: 80 ug/√Hz
- Gyroscope 2.8 mdps/√Hz
- Accurate ODR ≤ 1%

Edge processing

- Machine learning core & finite state machine
- Adaptive self configuration
- 4.5k smart FIFO
- 2 user programmable interrupts (+ IBI on I³C)

Highly integrated

- Sensor Hub with processing capabilities
- Interface: SPI, I2C, I3C®, with 1.2V compatibility
- Qvar for UI

Focused applications with LSM6DSV32X

- Motion tracking
- Context awareness (walking, jogging, biking, running,..)
- Pedometer & Step Counter
- Safety (shock detection)

- Motion tracking
- Safety (Shock detection)
- Free fall height detection
- Context awareness
- Tilt detection

Wearable LSM6DSV32X

Edge processing

LSM6DSV32X brings AI at the edge. It transfers **meaningful data**, reducing the amount of personal data to be processed by application processor or cloud.

Highlights

- Acceleration full scale up to 32g
- Machine learning core (MLC) & finite state machine (FSM)
- Adaptive self configuration

Advantages

- AI-based recognition of wrist movements and gym activity
- Embedded sensor hub allowing to process thirdparty data in MLC and FSM
- Free fall height estimation and shock detection
- Enhanced user interface with Qvar electrostatic sensin
- Ecosystem of tools and design examples

IoT and asset trackers LSM6DSV32X

Edge processing

LSM6DSV32X machine learning core can be programmed to detect shock and identify when your parcel is in trouble. It wake up the whole system only when needed.

Highlights

- Shock detection (with different level of tracking)
- Machine learning core (MLC) & finite state machine (FSM)
- Adaptive self configuration

Advantages

- Context detection for optimal power configuration
- Free fall height estimation and shock detection
- Embedded sensor HUB with possibility to process third party data in MLC and FSM
- Meaningful data processing reducing data transfer
- Ecosystem of tools and design examples

Wearable One device for everything you need

Extended range	Wide range full scale up 32g and 4000 dps enable enhanced tracking for wearable
Context awareness	Machine learning core (MLC) and finite state machine (FSM) for activity tracking & optimized configuration application-based
3-D tracking	Embedded sensor fusion algorithm to enable 3-D orientation and enhanced gym activity tracking
Smart, always aware	Adaptive self configuration (ASC) ST smart sensors reconfigures themselves
1	
Free fall height estimation	Scalable solution for embedded shock event detection with free fall height estimation
Ready	Configuration & software examples for optimal time to market
	8

life.augmented

Extended range full scale up to 32g & 4000 dps

Measure your performance and ensure safety during your run!

The device automatically **reconfigures itself thanks to the ASC** feature based on the device context, maximizing the **system efficiency**.

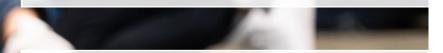
MLC and **FSM** detect the context and track your activities without the need of additional data processing

Detect falls and impacts to allow the transmission of a falldown alert to first responders

Context awareness detection

Adding intel	ligence in the edge with	MLC and FSN	LSM6DSV32X	7
		gyroscope	MLC & FSM process the accelerometer and data to detect usage conditions with no interaction with external processor	1
		A few exar	nples*	
		1 µA	Identify activity and inactivity (i.e. wake up the system only when needed)	
1.		6 µА	Gym activity recognition	
		6 µА	Wrist tilt detection for display wake up	
		From 1 μA to 35 μA	Scalable solution to detect free fall, shock and fall height estimation (or man Ddown)	
57				10

life.augmented


Free fall height estimation

Feel at ease: LSM6DSV32X can monitor the shocks

Scalable solution to detect shock, free fall, and estimate height of the free fall

Embedded processing and **FSM** detect the context without the need of additional data processing at system level

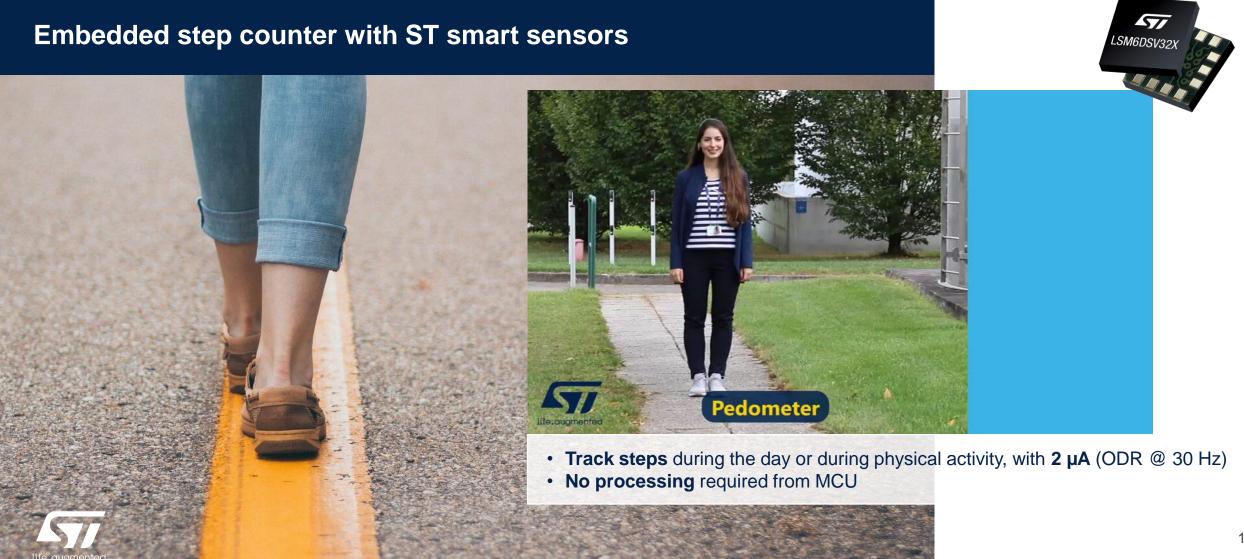
From free fall height exceedance detection*, to the accurate height estimation & shock intensity always the right algorithm ,

* Power consumption values are related to the embedded processing in 1 μA to 35 μA 11

3-D orientation

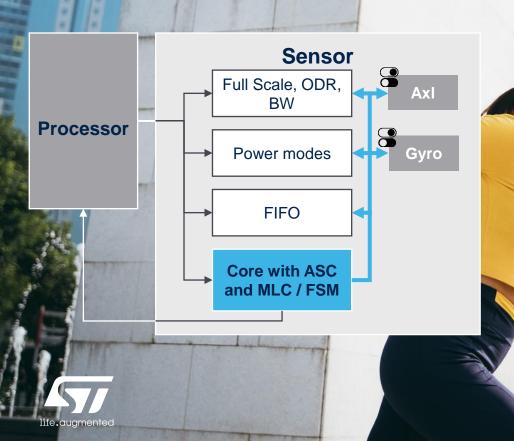
Track and monitor orientation in 3-D space

Detect and track device orientation with the **embedded low power sensor fusion** algorithm with **30 \muA**


Plug and play solution that provided 6x game rotation vector (accelerometer + gyroscope) & gyro-bias calibration

Static accuracy⁽¹⁾: 0.5, 1.5, 1.5 deg Low dynamic accuracy⁽¹⁾: 0.7, 0.5, 0.5 deg Calibration time⁽²⁾:0.8 s Orientation stabilization time: 0.7 s Extra power: 30 μ A @ 120 MHz

Rotation vector is available in **quaternion format**, and it can be stored in the **embedded FIFO**


Embedded pedometer

Adaptive self configuration (ASC)

From "Always-on" to "Smart, always-Aware"

The device automatically **reconfigures itself**, based on the actual context, maximizing the **system efficiency**.

MLC and FSM detect the context without the need of additional data processing

ASC allows to independently configure gyroscope and accelerometerchannels. **No tradeoff required!**

Embedded solutions with edge processing for wearables

Configuration example		Description	Where?
0	Activity recognition for wrist	Stationary / other, walking / fast walking, jogging / running	Accelerometer data processed by MLC
*	Gym activity recognition	Bicep curls, lateral rises, squats	Accelerometer data processed by MLC
V	Gestures detection	Flip-up / down, 4D, glance, pick-up, phone-to-ear, jiggle / shake, wrist navigation, wrist-tilt	Accelerometer + Gyroscope data processed by FSM (or MLC)
Į	Free fall & shock height estimation	Detect free-fall & shock events with free fall height estimation	Accelerometer data processed by FSM
	Shock intensity estimation	Detect shock events with intensity estimation	Accelerometer data processed by FSM & MLC
!	Pedometer	Step detection, step counter and significant motion detection	Accelerometer pedometer
ļ,	Pose recognition	Detect 14 classes	Accelerometer data processed by MLC

Embedded solutions with edge processing for asset tracking

Configuration example		Description	Where?
+	Stationery & motion detection	Stationary upright / stationary not upright / in motion / shaken detection	Accelerometer data processed by MLC
	Free fall and impact	Impact detection / free fall detection	Accelerometer data processed by FSM

Examples of edge processing with MLC and FSM

The perfect solutions for IoT & wearable platforms

10 µA	Human activity recognition for wrist-worn device	
<mark>6 µA</mark>	Gym activity recognition	
35 μA	Free Fall & Shock Height estimation	
<mark>6 µA</mark>	Wrist-tilt	
<mark>6 µA</mark>	Jiggle gesture	
<mark>18 µA</mark>	Android wear OS navigation gestures	
<mark>110 μΑ</mark>	Tap detection	
<mark>5 μΑ</mark>	Pedometer (Advanced by MLC & FPR block)	
<mark>1 μΑ</mark>	Sleep detection	
(*) Power of	consumption referred to MLC/FSM only	
GitHub :	MLC: https://github.com/STMicroelectronics/STMems_Machine_Learning_Core FSM: https://github.com/STMicroelectronics/STMems_Finite_State_Machine	


ST ecosystem supporting learning and prototyping

From product to system in a nutshell



Professional MEMS tool (STEVAL-MKI109V3)

SensorTile.Box PRO

LSM6DSV32X EVB (STEVAL-MKI240KA)

SensorTile.Box PRO & STEVAL-MKI109V3
Gym activity recognition
Free fall height estimation
and many more

Development tools

MEMS Studio: graphical design app to build advanced algorithms

18

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

