r UM3053
,l life.augmented

User manual

Getting started with the AEKD-AICAR1 evaluation kit for car state classification

Introduction

The AEKD-AICART1 is a versatile deep learning system based on a long-short term memory (LSTM) recurrent neural network
(RNN). It is able to classify the car state:

e car parked

e cardriving on a normal condition road

e cardriving on a bumpy road

» car skidding or swerving

The main idea is to define an Al-car sensing node ECU with an embedded artificial intelligence processing.

The system hosts an SPC58EC Chorus 4M microcontroller, which is able to acquire discrete acceleration variations on a
three-axis reference system.

The AIS2DW12 motion sensor mounted on the AEK-CON-SENSOR1 board retrieves inertial data. The acquired data are
transmitted to the LSTM RNN, which classifies the car state. The classification result is shown on the AEK-LCD-DT028V1 LCD
touch display.

The LSTM RNN has been implemented and trained using the TensorFlow 2.4.0 framework (Keras) in the Google Colab
environment. The AI-SPC5Studio plug-in has been used to convert the resulting trained neural network into an optimized C
code library, which can run on an MCU with limited power computing resources.

Figure 1. AEKD-AICAR1 evaluation kit

ing Node

The LSTM RNN training has been performed with several time-series acceleration waveforms recorded on a real vehicle in
motion. The resulting prediction accuracy, calculated by the confusion matrix, is about 93%. Field tests carried-out under all road
conditions with a sedan confirm the adherence of the computed results compared with the real road conditions.

Note: The AEKD-AICART1 is an evaluation tool for R&D laboratory use only. It is not destined for use inside a vehicle.

UM3053 - Rev 1 - September 2022 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/ais2dw12?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-con-sensor1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

m UM3053

Neural network basic principles

1 Neural network basic principles

1.1 Artificial neural network

The artificial neural network works as the human brain neural network. Data are transferred to the neuron through
the inputs. Then, they are sent as an output after processing.

Figure 2. Artificial neural network

neuron

input @ output

Artificial neural networks are built on layers of different neural units. Each unit consists of three parts:
. an input part that receives the data

. a hidden part that uses the neuron weight to calculate the result

. an output part that receives the calculation results and applies an eventual bias

The weight associated with each neuron determines its firing probability. The bias is the measure of assumption
made by the form of the output.

This architecture is typical for deep learning processes like data classification and pattern recognition neural
networks.

1.2 Long short-term memory recurrent neural network (LSTM RNN)

Traditional artificial neural networks keep no memory of what happened in the past. They take their decision only
on the data provided instant by instant. These architectures are well suited for data classification and pattern
recognition.

For other applications, like speech recognition, the proper classification requires a memory of the context, that is,
the prior words in the speech recognition application.

A recurrent neural network (RNN) is a class of artificial neural network that includes neurons connected in a loop.

UM3053 - Rev 1 page 2/39

m UM3053

Long short-term memory recurrent neural network (LSTM RNN)

Figure 3. Recurrent neural network

In most cases, the output values of an upper layer are used as the input for a lower level one. This
interconnection enables the use of one of the layers as the state memory and allows modeling a dynamic time
behavior dependent on the information previously received.

A typical recurrent neural network able to keep the information received is the long short-term memory (LSTM)
recurrent network. Unlike traditional artificial neural networks, LSTM has feedback connections. It can process not
only single data points but also entire sequences of data. For this reason, the LSTM neural network architecture is
the best candidate to model a deep learning system for an Al-car sensing node, using a collection of time-series
based on acceleration values.

UM3053 - Rev 1 page 3/39

m UM3053

Designing an Al-car sensing node

2 Designing an Al-car sensing node

2.1 Tool-set introduction

An Al-car sensing node is an Al-deep learning system based on an LSTM recurring neural network, which can
provide a car state classification: parking, driving on a normal condition road, driving on a bumpy road, and car
skidding or swerving.

Figure 4. Al-car sensing node: car state classification

2 Parking

Normal Driving

Al-car sensing node

state Bumpy Driving

Skidding/Swerving

The LSTM RNN has been modeled with TensorFlow (Keras framework). This is an open-source software library
for machine learning, which provides optimized modules to implement Al algorithms related to the classification
problem.

A significant amount of computing power is required to implement sufficiently robust and efficient models. For
initial tests, we can rely on a standard machine. As the dataset size increases, the execution of complex training
algorithms becomes rapidly prohibitive.

To address this issue, there are several cloud services that offer computing power. Google Colab is an alternative
platform, which allows running the code directly on the cloud, even if with some limitations.

2.2 Creating a Google Colab notebook

To use the Google Colab platform, you need a Google account to login. After logging in, create a new “Colab
notebook” project file.

UM3053 - Rev 1 page 4/39

https://colab.research.google.com/

m UM3053

Colab notebook setup and package importing

Figure 5. Project file

£ UntitledO.ipynb 1%
File Edit View Insert Runtime Tools Help All changes saved

4 Locate in Drive

Open in playground mode

New notebook

P Open notebook ctrl+0
Upload notebook

(x}

Rename
Move
D

Move to trash

Save a copy in Drive
Save a copy as a GitHub Gist

Save a copy in GitHub

Save Crts
Save and pin revision Ctrl+M S
Revision history

Download

Print Ctri+P

The document that you are creating is not a static web page. It is an interactive environment that lets you write
and execute your Python code to implement an LSTM RNN by using the TensorFlow framework.

2.3 Colab notebook setup and package importing

To implement and train an LSTM RNN, install the Tensorflow 2.4.0 framework on your Google Colab notebook by
using the packet index package (PIP) command.

$pip install tensorflow==2.4.0

Note: PIP is already installed on your Google Colab notebook.
Using the Python commands, import the following packages:
. Pandas
Open-source software library for data manipulation and analysis.
import pandas as pd
. Numpy

Open-source software library, adding support for large, multidimensional arrays and matrices, along with a
large collection of high-level mathematical functions to operate on these arrays.

import numpy as np
. Tensorflow

Open-source software library for machine learning, which provides optimized modules to implement artificial
intelligence (Al) algorithms.

import tensorflow as tf
. Sklearn

A package providing several common utility functions and transformer classes to change raw feature vectors
into a representation that is more suitable for the downstream estimators.

from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model selection import train test split , StratifiedShuffleSplit
from sklearn.metrics import confusion matrix

. (05

The Python language OS module has several useful functions to make the program interact with the
computer operating system.

import os

UM3053 - Rev 1 page 5/39

https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Function_(mathematics)

m UM3053

Al-car sensing node life cycle

. Random
This module implements pseudo-random number generators for various distributions.
import random

. Seaborn

Seaborn is a Python data visualization library based on Matplotlib. It provides a high-level interface to draw
attractive and informative statistical graphics.

import seaborn as sn

. Matplot
Matplotlib is a comprehensive library to create static, animated, and interactive visualizations in Python.
import matplotlib.pyplot as plt

24 Al-car sensing node life cycle
The following steps define the life cycle of the Al-car sensing node implementation as a deep learning model for
classification:

1. Model definition

2 Model training

3. Model fitting and compilation
4. Model evaluation

2.41 Model definition

To define the model, we have chosen the topology of the LSTM network. The Al-car sensing node network is
based on the same network architecture of a speech recognition system. It consists of a neural convolution kernel
as an input layer, able to elaborate a convolution function with the input vector over a temporal dimension.

The input vector is a time sequence of TIMESERIES LEN number of samples, which consist of discrete
acceleration variations on a three-axis (x, y, z) reference system: Aax, Aay, and Aaz.

TIMESERIES LEN represents the minimum size of the temporal window for the car state classification. With an
acquisition sampling time equal to 100 msec, the value of TIMESERIES LEN has been fixed to 50 samples (5
seconds per acquisition).

A dense function implements the output layer. This function can provide an output shape of four-dimensional
vectors (one for each expected status: parking, normal, bumpy, skid). The softmax function activates this layer
and converts the output vector values to a probability distribution.

From an implementation perspective, this involves a model layer architecture built with a connection topology into
a cohesive model:

UM3053 - Rev 1 page 6/39

https://matplotlib.org/

UM3053

Al-car sensing node life cycle

24.2

UM3053 - Rev 1

ConvlD based model
model = tf.keras.models.Sequential ([
tf.keras.layers.ConvlD(filters=16, kernel size=3, activation='relu',
input_shape=(TIMESERIES LEN, 3)),
tf.keras.layers.ConvlD(filters=8, kernel size=3, activation='relu'),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (64, activation='relu'),
tf.keras.layers.Dense (4, activation='softmax')

1)

Layer (type) Output Shape Param #
convld (ConvlD) (None, 48, 16) 160
convld 1 (ConvlD) (None, 46, 8) 392
dropout (Dropout) (None, 46, 8) 0
flatten (Flatten) (None, 368) 0

dense (Dense) (None, 64) 23616
dense_1 (Dense) (None, 4) 260

Total params: 24,428
Trainable params: 24,428
Non-trainable params: 0

As described in the above code block table, 24,428 trainable parameters define the Al-car sensing node network
model. These parameters are related to the LSTM RNN topology chosen.

Model training

The Al-car sensing node network training has been performed by acquiring datasets of acceleration variations in
the time domain:

. over a three-axis reference system (Aax, Aay, Aaz)

. with a frequency equal to 10 Hz

. a sample time of 100 msec

Each dataset targets a specific car state: parking, normal driving, bumpy driving or skidding.

The use of acceleration variations instead of raw acceleration data avoids misinterpretations of the car state. If
the car is parked on a road with a negative (or positive) slope (as shown in the figure below), the IMU registers
a nonzero X-axis acceleration that would not lead to the parking state. Instead, if we consider an acceleration
variation in the time domain, the result would be 0, leading to the correct parking state.

page 7/39

‘_ UM3053
,l Al-car sensing node life cycle

Figure 6. Acceleration variations

Car speed Vx = 0 Km/sec;
Car acceleration ax! = 0;
Temporal variation of acceleration Aax = 0

Z
Y

2.4.21 Training dataset
The acquisition of training datasets can be performed using a specific configuration of the Al-car sensing node
mock-up (acquisition mode). A proper source code #define enables the acquisition mode. In this mode, the
application sends each acceleration sample read from the sensor to a serial port with a baud rate set to 38400.
The serial data stream can be read through a common serial client (Tera Term or Putty). The data acquisition and
parsing in a CSV file are managed via a specific Python script (see Section Appendix C).

The following figure shows an example of a time-based dataset generated with the Python script.

UM3053 - Rev 1 page 8/39

m UM3053

Al-car sensing node life cycle

Figure 7. Time-based dataset example

4 A | 8 | ¢ | b
1 [Time Acc_x Acc_y Acc_z

2| 100 -0.28792 0.0244 -0.11468

3| 200 -0.28792 0.0366 -0.11956

4| 300 -0.29036 0.0366 -0.11468

5| 400 -0.29036 0.02684 -0.10736

6| 500 -0.2806 0.02684 -0.10492

7| 600 -0.28524 0.04636 -0.11712

8| 700 -029768 0.0366 -0.11468

o| 800 -0.29524 0.02928 -0.11468 “ S

10 900 -0.2928 0.03172 -0.11224

11| 1000 -0.29524 0.0366 -0.11224 4
12| 1100 -0.2806 0.0244 -0.10492

13| 1200 -0.28304 0.03172 -0.12444

14| 1300 -0.28792 0.0366 -0.11956

15| 1400 -0.28792 0.02928 -0.10492

16| 1500 -0.28304 0.0366 -0.11956

17| 1600 -0.28304 0.03904 -0.11468 &
18| 1700 -0.29036 0.02928 -0.1098 5
19| 1800 -0.27572 0.02196 -0.11468 x
20| 1900 -0.28304 0.0244 -0.10736

21| 2000 -0.28548 0.04148 -0.11956

22| 2100 -0.27084 0.04143 -0.12444

23| 2200 -0.28792 0.02196 -0.10492

24| 2300 -0.29768 0.0244 -0.1098

25| 2400 -0.2928 0.03904 -0.11956 — —

26| 2500 -0.2928 0.03172 -0.11224

27| 2600 -0.29768 0.02196 -0.11224

The time column contains the recorded acceleration time samples. The other three columns contain the
acceleration values measured on the X, Y, and Z axis, respectively (without the gravity offset).

To prepare the file for the network training, you have to:
. Compute the acceleration variations (excel cell operation: B3 = B3—B2 for X axis).

UM3053 - Rev 1 page 9/39

UM3053

Al-car sensing node life cycle

. Add a status column for the car state for each specific acquisition (P = parking; N = normal; B = bumpy; S=
skid).

Figure 8. Adding the status column

4 H | J J K | L J
1 |Time Acc_x Acc_y Acc_z Status
2 100 0 0.0122 -0.00488 P

3 | 200 -0.00244 0 0.00488 P

4 300 0 -0.00976 0.00732 P

5 | 400 0.00976 0 0.00244 P

6 500 -0.01464 0.01952 -0.0122 P

7 | 600 -0.00244 -0.00976 0.002441 P

8 700 0.00244 -0.00732 0P

9 800 0.00244 0.00244 0.002439 P

10 900 -0.00244 0.00488 oP

1 1000 0.01464 -0.0122 0.007321 P

12 | 1100 -0.00244 0.00732 -0.01952 P

13 | 1200 -0.00488 0.00488 0.00488 P

14 1300 0 -0.00732 0.01464 P

15 | 1400 0.00488 0.00732 -0.01464 P

. Create a CSV file for each car state through a specific acquisition task.

IE%EI

CSV Parking

Figure 9. Creating CSV files

IE%EI

CSV Normal

. Merge all CSV files by coping and pasting each row without changing the time column values.

CSV Bumpy

. Add a new dummy row at the end of the file with the time value equal to 100.
. Add random values for Ax, Ay, and Ax status.

Note:

2.4.2.2

Neural network training with Google Colab

IE%EI

CSV Skid

A ready-to-use dataset (Diff_profile.csv) has been created to train the network for the car state classification.

Import the training dataset contained in the CSV file into the Colab notebook environment. Then, run a parser
function on the imported data to build an input vector compliant with the LSTM RNN.

The following code block shows the Google Colab script, which imports and loads the CSV file.

from google.colab import files
uploaded = files.upload()

db = pd.read csv('Diff profile.csv',sep=',")

Parse each column of the CSV file (status, Acc_x, Acc_y, Acc_z, time).

UM3053 - Rev 1 page 10/39

UM3053

Al-car sensing node life cycle

Note:

243

UM3053 - Rev 1

states = db['Status'].value counts ()

ts status = db.Status

ts diff Ax = (db.Acc_x.to numpy () .reshape(-1,1))/9.81
ts diff Ay = (db.Acc_y.to numpy () .reshape(-1,1))/9.81
ts diff Az = (db.Acc_z.to numpy () .reshape(-1,1))/9.81
ts time = db['Time']

Use a simple script to reshape the dataset to be compliant with the shape of the LSTM input vector (50 samples
of a three-dimensional vector). The number of LSTM input vectors is computed from the total number of samples
acquired in all the states, choosing window waveforms of 50 samples.

If for the parking state we have 350 samples, 350/50 = 7 window waveforms are generated.

TIMESERIES LEN = 50
Y LABELS={'P':0,'N':1,'B':2,'S':3}

def trip framing(trip,label, frame size,db_x,db y):
a = np.array(trip)
for i in np.arange(0, a.shape[0]-frame size, frame size):
x = ali:i+frame size]
db x.append(x)
db y.append(Y LABELS[label])
ts status.shape([0]
[]
[]

rows
db x
db y

for states id in states.keys():

trip = []
cnt = 0
for i in range(rows) :
if ts time[i] == 100:
if len(trip) > O:
trip framing(trip, states id, TIMESERIES LEN, db x, db y)
trip=[]
if ts status[i] == states id and cnt < 7500:
trip.append([ts diff Ax[i],ts diff Ay[i],ts diff Az[i]])
cnt += 1

The cnt variable contains the number of available window waveforms according to the dataset acquired during
each specific car status.

Model fitting and compilation
Firstly, for model fitting, select the training configuration:
. Training test percentage:
— Percentage of the window waveform available over the total, used to perform the training task.
. Batch size:

- Percentage of the window waveform available over the total, used to perform the estimation of the
network accuracy (model error).

. Number of epochs:
— Number of loops through the training dataset.

x train, x test, y train, y test = train test split(db x, db y, test size=0.4,
random state=21,stratify=db y)

x train = np.asarray(x_train)[:,:,:,0]

x test = np.asarray(x test)[:,:,:,0]

y train = np.asarray(y train)

y test = np.asarray(y test)

db stats = pd.Series(y test)

To train the model, an algorithm is required to minimize the accumulated errors in identifying the correct car state.
This algorithm consists of a loss function to be passed to the model . compile API to generate the complete
runnable code.

The chosen loss function is the sparse categorical cross-entropy able to correlate the state label (for
example, “P” with the neural network prediction).

page 11/39

UM3053

Al-car sensing node life cycle

244

UM3053 - Rev 1

model.compile (optimizer='adam', loss='sparse categorical_ crossentropy', metrics=['accuracy'])
model.fit (x_train, y train, epochs=1000)

Fitting and compilation for the RNN generate a complete model. This procedure is quite slow. It can take few
seconds up to days, depending on the model complexity and the training dataset size.

For the Al-car sensing node, set 1000 epochs and 60% of the available window waveform used for the training.
This results in a computation time of around 70 seconds.

Figure 10. Complete model generation
Epoch 29@/1060
5/5 [=============== === ====] - 8s 7ms/step - loss: 2.3488e-84 - accuracy: 1.0060
Epoch 991/1660
5/5 [==============================] - 8= ?ms/step - loss: 2.1694e-84 - accuracy: 1.0e00
Epoch 992/1ee@
5/5 [==============================] - 8s 7ms/step - loss: 9.4312e-@4 - accuracy: 1.0
Epoch 993/1e€@
5/5 [=====================-—c-c-===1] - @5 10ms/step - loss: ©.8212 - accuracy: 1.2000
Epoch 994/10ea
S5/5 [===========m——eee—eeee—ee—=====] - 25 9ms/step - loss: 6.8372e-04 - accuracy: 1.0000
Epoch 995/100@
5/5 [==============================] - @s 8ms/step - loss: 4.142%e-84 - accuracy: 1.0600
Epoch 996/1000
S5/5 [==============—===c=——cc—cc-—==1] - 8s 8ms/step - loss: 6.8827 - accuracy: 1.8200
Epoch 997/166@
5/5 [======s===sssss==szsszs========] - @5 18ms/step - loss: 5.2884e-84 - accuracy: 1.8800
Epoch 998/1ee@
5/5 [s====s=ss======================] - @5 9ms/step - loss: 5.4834e-84 - accuracy: 1l.9000
Epoch 999/10€0
5/5 [==============================] - @s 8ms/step - loss: ©.8815 - accuracy: 1.8600
Epoch 1eee/1e00
5/5 [==============================] - 8 Bms/step - loss: ©.8834 - accuracy: 1.8200
Model: "sequential™

Model evaluation

To evaluate the model accuracy, choose a holdout window waveform. This should be based on data not used in
the training process, to get an unbiased estimation of the model performance when making a prediction on “new’
data.

The model evaluation speed is proportional to the amount of data used for it, but faster than the training phase.

A confusion matrix performs the model accuracy evaluation. This is a technique to summarize the algorithm
classification performance. As the datasets have different sizes, using a pure classification accuracy could be
misleading. Therefore, calculating a confusion matrix can give you a better idea of what your classification model
is getting right and what miss classification is obtaining.

Use the following code to build a confusion matrix.

Y pred =
y _pred =
confusion matrix =

model.predict (x_test)
np.argmax (Y pred, axis=1)
tf.math.confusion matrix(y test, y pred)

plt.figure ()

sns.heatmap (confusion matrix,
annot=True,
xticklabels=Y LABELS,
yticklabels=Y LABELS,
cmap=plt.cm.Blues,

fmt="'d', cbar=False)
plt.tight layout ()
plt.ylabel ('True label')
plt.xlabel ('Predicted label')
plt.show ()

The confusion matrix for the Al-car sensing node is:

. 26 actual parking window waveforms used for the evaluation have been predicted as parking (no miss
classifications).

page 12/39

m UM3053

Al-car sensing node life cycle

. 36 actual normal window waveforms used for the evaluation have been predicted as normal, whereas four
have been classified as bumpy.

. 18 actual bumpy window waveforms used for the evaluation have been predicted as bumpy (no miss
classifications).

. Only one actual skid window waveform has been recognized as skid, whereas three have been confused
with bumpy.

Figure 11. Confusion matrix

0
0
&
®
@
=
0
" - 0 0 3 1
P N B s

Predicted label

The LSTM RNN accuracy for the Al-car sensing node is about 93%. The miss classification for the skid state
impact the calculated accuracy value, due to the very low number of window waveforms used for training (only
four).

Despite the above considerations, we consider the accuracy value acceptable and defer a new accuracy
calculation for the skid state to the field tests to perform on the sedan.

UM3053 - Rev 1 page 13/39

m UM3053

AutoDevKit ecosystem

3 AutoDevKit ecosystem

3.1 SPC5-STUDIO-AI plugin

The LSTM Al-car sensing node network implemented with the TensorFlow framework inside the Google Colab
environment is then converted in a C library compliant with SPC5-STUDIO.

On the Google Colab notebook, the LSTM Al-car sensing node network architecture is saved as an *.h5 file. This
file is then fed into SPC5-STUDIO-AI to obtain a fast and optimized version of the RNN.

model.save ('model car sts.h5'")

SPC5-STUDIO-Al is the artificial intelligence plug-in for SPC5-STUDIO able to generate automatically a
pretrained neural network into an efficient “ANSI C” library to be compiled, installed, and executed on SPC58
microcontrollers.

You can easily import pretrained neural networks in the SPC5-STUDIO-AI from the most widely used deep
learning frameworks, such as Keras, TensorFlow Lite, Lasagne, Caffe, ConvNetJS, and ONNX.

SPC5-STUDIO-AI provides validation and performance analysis features to validate and characterize the
converted neural network and measure key metrics such as validation error, memory requirements (flash memory
and RAM), and execution time.

This plugin is integrated within the SPC5-STUDIO (version 6.0.0 or higher) development environment.
To install the SPC5-STUDIO-AI, follow the procedure below.

Step 1. Select [Install new software] from [Help].

Figure 12. Installing the plugin

&i workspace_Al - SPC5Studio
File Edit Mavigate Search Project Run Window Help

MR B) % @S Qi@ Welcome
5 Project Explorer @ Help Contents
8BSV @Y% |6 &4 ¥ Search
~ {2 SPCS8ECxd_RLA Al Car Sensing Node Show Contextual Help
% SPCSBECux Platform Component RLA Show Active Keybindings.. Ctrl+Shift+L

£ SPC58EC« Init Package Component RLA % Tips and Tricks..

#5* SPCS8ECxx Low Level Drivers Component Rl ~paat Sheets..
% AutoDevKit Init Package Component

r

AEK-LCD-DT028V1 Component RLA E;"Pi‘*fusz’ i“;’age e
" eCk 1or UpQates
@l AEK_CON_SENSOR1 Component RLA o :

2 Install New Software...

€3 SPCS Al Component RLA
@ [Dep| Board wizard component
#1 [Dep] SPCS8ECxx Board Initialization Comp: " About SPC55tudio
& [Dep] SPCS8ECxx Clock Component RLA
& [Dep] SPC58ECxx IRQ Component RLA
[Dep] SPCS8ECxx OSAL Component RLA

>) Binaries

s B Archives

2 components

> & build

> (= pclint

&= source

> &= UDE

[2 main.c

= application.d

Ly configuration.xmi

L& Makefile

@ patch.xml

B el ok

Eclipse Marketplace..

1 e de

R

wr

T

UM3053 - Rev 1 page 14/39

https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

UM3053

SPC5-STUDIO-AI plugin

3

Step 2. Insert http.//ai.spc5studio.com in the [Work with] field.

Figure 13. Install new software

& Install a ¥
Available Software
Check the items that you wish to install. (g
Work with: | Artificial Intelligence - http://ai.spc3studio.com ~ Add. ; Manage...
| type filter text Select All
Mame Version [Deselect All
» [CJomn A1
< >
Details
[Show only the latest versions of available software [“] Hide items that are already installed
[Group items by category What is glready installed?
[C] Show only software applicable to target environment
[Contact all update sites during install to find required software
Finish | Cancel

® < Back | Mext > |

Step 3. Click on [Select all] and [Next].
Step 4. Install SPC5-STUDIO-AL.

UM3053 - Rev 1 page 15/39

https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

m UM3053

SPC5-STUDIO-AI plugin

3141 How to import SPC5-STUDIO-AI using the standard importing procedure
Step 1. Create a new SPC5-STUDIO application based on the SPC58ECxx platform.

Figure 14. Creating a new SPC5-STUDIO application

e—— a P R

& SPCS C/C++ Application Wizard o X [7

SPC5 C/C++ Application General Page - Starter tﬂo_s

How to " din
@ Project already exists!
"EI‘ Create new SPCS application
Project Name | SPCSBECox_RLA Al Car Sensing Node| | 0 ot e T TR

Use default location
Editors for "SPCS8ECxx_RLA Al Car Sensi

Location | CASOCEChudine thumndenaca Al R
workingsets | 6 SPCS5 C/C++ Application Wizard o X
[Add project

SPC5 C/C++ Application Platform component
Specify SPC5 C/C++ application component details.

Select a platform to add.

| filter text

Flat View Tree View

Component Name Vendor Category
o SPC5745xx Platform Component R.. STMicroelectr.. Power e200z/SPC574Sxx (S...
L] SPC582Bxx Platform Component .. STMicroelectr.. Power e200z/SPC582Bxx (...
@ G SPC584Bxx Platform Component.. STMicroelectr.. Power e200z/SPC584Bxx (..
| [& SPC58ECxx Platform Component.. STMicroelectr.. Power e200z/SPC58ECxkx (... |
] SPC58xExx Platform Component R... STMicroelectr... Power e200z/SPC58xExx (E..
&i SPC58xGxx Platform Component .. STMicroelectr.. Power e200z/SPC58xGxx (...
o SPC58xMNiwx Platform Component ... STMicroelectr... Power e200z/SPC58xNx (... v

Step 2. Import the following components:
— AutodevKit Init Package
— SPC58ECxx Init Package Component RLA

Step 3. Select [SPC58ECxx Platform Component RLA].

Figure 15. Selecting the component

eV ey B a4 =10 2¢
~ Jat SPC58ECxx_RLA Al Car Sensing Node
v = SPC58ECxx_RLA Al Car Sensing Node
4 SPC58ECxx Platform Component RLA
¢ SPC58ECxx Init Package Component RLA
7 SPC58ECxx Low Level Drivers Component RLA
%= AutoDevKit Init Package Component
AEK-LCD-DT028V1 Component RLA
@l AEK_CON_SENSOR1 Component RLA
€3 SPC5 Al Component RLA
© [Dep] Board wizard component

UM3053 - Rev 1 page 16/39

‘_ UM3053
,l SPC5-STUDIO-AI plugin

Step 4. Click on [+] to add a new component.

Figure 16. Adding a new component

e@viaswa(a)y e

v Jmy SPC58ECxx_RLA Al Car Sensing Node
v (2 SPC58ECxx_RLA Al Car Sensing Node

% SPCS8ECxx Platform Component RLA
% SPC58ECxx Init Package Component RLA
% SPC58ECxx Low Level Drivers Component RLA
%= AutoDevKit Init Package Component
AEK-LCD-DT028V1 Component RLA
@l AEK_CON_SENSOR1 Component RLA
£3 SPC5 Al Component RLA
@ [Dep] Board wizard component

Step 5. Select [SPC5 Al Component RLA].

Figure 17. Selecting [SPC5 Al Component RLA]

& Select availabl ecomponents

Select one or more components to add.

|ai

Flat View Tree View

Component Name Vendor Category
@ SPC5 Al Component RLA STMicroelectr.. Al SPCS

<

MName:SPC5 Al Component RLA
ID:com.st.spcS.components.aispesx_rla
Version:2.1.0.20201202110748
Description:Al Component for SPCS.

[] show hidden components
[] show incompatible components

| oK | cancel

3.1.2 How to import the pretrained LSTM neural network
The following procedure shows how to import the pretrained LSTM neural network for the Al-car sensing node.

UM3053 - Rev 1 page 17/39

3

UM3053

SPC5-STUDIO-AI plugin

UM3053 - Rev 1

Step 1.

Select the [SPC5 Al Component RLA] in the project explorer.

A new window is opened with the network list imported.

Figure 18. Network list imported

i Project Explorer & = O | & SPCSECo RLA Al Car Seasing Node =]
(= |- % Qle=308 0 T 5 a
- g SPCEEECxx_F\lAAICarQ:emmﬂ Mo + | & Application Configuration -0 F
~ (5 SPCSBECe LA Al Car Sensing Node SPCS Al Component RLA =0 Sl
4 SPCSBECxx Platform Component RLA Al eonfiguiation.
& SPCSBECxx Init Package Component RLA e
7 SPCSBEex Law Level Drivers Compenent RLA @ Copyright (C) STMicroelectronics. All rights reserved.
%= AutoDevKit Init Package Compenent
] AEK-LCD-DT028V1 Component RLA
@IAEK_CON_SENSOR1 Component RLA i
5 SPCS Al Component RLA Network List * =00
-3 Board wizard component * Enable Mame Type Compression Mode File Path
SPCSBECxx Board Initialization Component RLA 0 true sensing_no.. keras 1 source/model
SPCSBECKx Clock Component RLA
SPCSBECKx IRQ Component RLA
SPCSBECxx DSAL Component RLA
~ G components
(& 26K _CON_SEnsor_component_ra
Step 2. Add a new network by clicking on [+].
Figure 19. Adding a new network
& Project Explorer 21| = 01 | SPCSBECix RLA Al Car Sensing Node i1 L
cET T . e
- H-smﬁsec.k,num}:are:mmg.n:e m— .g. & Application Configuration -
€5 SPCSEEC RLA Al Car Sensing Node S Al Component RLA =4 ST L
4 SPCSBECM Platform Component RLA Al configuation.
© SPCSBECkx Init Package Component RLA. e
9 SPCSBEGer Low Level Drivers Component RLA @ Copyright (C) STMicroelectranics. All rights reserved.
= AutoDevKit Init Package Compenent
2] AEK-LCD-DT0281 Companent RLA
AEK_CON_SENSORT Companent RLA T
& SPCS Al Companent RLA Netwaork List L LR
@ [Dep) Board wizard component # Enable Name Type Compression Moded File Path
SPCS8ECxx Board Initialization Component RLA 0 true sensing_no.. keras 1 source/model
SPCSBECKx Clock Component RLA
SPCSBECKx IRQ Component RLA
& |Dep) SPCSBECKx OSAL Companent RLA
& Binaries
) Archives
~ § components
= aek_con_sensor]_component_rla
Step 3. Double-click on the new network preconfigured with the default option.
Step 4. Configure the parameters for the LSTM Al-car sensing node.
Figure 20. Configuring the parameters
Iy *SPCS8ECx_RLA Al Car Sensing Node 2 | = a
& Application Configuration - 5
SPC5 Al Component RLA & ek~
Al configuration.
Network Settings [0]
Network initialization data.
"Enable
®Name ‘ sensing_node_network Type keras ~

Compression 1

Advanced Settings
Allocate Inputs El
Allocate Outputs []
Split Weights [

~ "Model File Path [source/model

Browse ‘ =

Step 4a.
Step 4b.
Step 4c.
Step 4d.

Enable the network initialization data.
Put a valid neural network name.

Select the framework used for the training (Keras).

applied to dense layers).

Step 4e.

Select a valid model file path that contains the *.h5 file.

Select a compression equal to 1 (it indicates the expected global factor of compression

page 18/39

m UM3053

SPC5-STUDIO-AI plugin

313 How to analyze the pretrained LSTM neural network
To analyze the pretrained LSTM neural network for the Al-car sensing node, follow the procedure below.
Step 1. Select [Analyze] in the [Outline] tab.

Figure 21. Selecting [Analyze]

& Outline % | BBe= § = 0]
~ {3 SPC5 Al Component RLA

> & Networks

> oo Analyze

> ok Validate

UM3053 - Rev 1 page 19/39

UM3053
SPC5-STUDIO-AI plugin

UM3053 - Rev 1

Step 2.

Click on [Analyze] in the newly opened window.

Figure 22. Clicking on [Analyze]

{57 *SPCSBECXX_RLA Al Car Sensing Node 52 | =

& Application Configuration

SPC5 Al Component RLA 8= |Erigr
Al configuration.

@ Copyright (C) STMicroelectronics. All rights reserved.

Analyze

In order to analyze the enabled networks, please, press the Analyze button.
For each of the enabled networks a report will be displayed in the console and will be stored in a dedicated file inside the project folder ..\components
\spc5_ai_component_rla\cfg\

List of enabled networks
- name: sensing_node_network, type: keras, compression: 1, model path: source/model
Analyze

(Click here to run the Anal

If the importing procedure for the LSTM Al-sensing node is correct, a new report is generated. This
new report shows the architecture of the neural network and the ROM and RAM memory usage.

Neural Network Tools for STM32 v1.4.0
-- Importing model
-- Importing model - done
-- Rendering model
-- Rendering model - done

(AI tools v5.2.0)
(elapsed time 0.574s)
(elapsed time 0.077s)

Creating report file C:\SPC5Studio-6.0\workspace AI\SPC58ECxx RLA AI Car Sensing
Node\components\spc5_ai_component_rla\cfg\sensing node network analyze report.txt

Exec/report summary (analyze dur=0.65s err=0)

model file C:\SPC5Studio-6.0\workspace AI\SPC58ECxx RLA AI Car Sensing Node\source\model\model car_sts.h5
type keras (keras_dump) - tf.keras 2.4.0

c_name sensing_node_network

compression : None

quantize : None

workspace dir C:\SPC5Studio-6.0\workspace AI\SPCS58ECxx RLA AI Car Sensing Node\components\stm32ai_ws

output dir C:\SPC5Studio-6.0\workspace AI\SPC58ECxx RLA AI Car Sensing

Node\components\spc5_ai_component_rla\cfg

model name

: model car_sts

model_hash 10794£1c230799b2alcda67171827db2

input input_0 [150 items, 600 B, ai_float, FLOAT32, (50, 1, 3)]

inputs (total) 600 B

output dense_1 nl [4 items, 16 B, ai_float, FLOAT32, (1, 1, 4)]

outputs (total) 16 B

params # 24,428 items (95.42 KiB)

macc 49,668

weights (ro) 97,712 B (95.42 KiB)

activations (rw) : 3,136 B (3.06 KiB)

ram (total) 3,752 B (3.66 KiB) = 3,136 + 600 + 16

id layer (type) output shape param # connected to macc rom

0 input_0 (Input) (50, 1, 3)
convld (Conv2D) (48, 1, 16) 160 input_0 7,696 640
convld nl (Nonlinearity) (48, 1, 16) convld

1 convld 1 (Conv2D) (46, 1, 8) 392 convld nl 18,040 1,568
convld 1 nl (Nonlinearity) (46, 1, 8) convld 1

3 flatten (Reshape) (368,) convld 1 nl

4 dense (Dense) 64,) 23,616 flatten 23,552 94,464
dense_nl (Nonlinearity) (64,) dense 64

5 dense_1 (Dense) (4,) 260 dense_nl 256 1,040
dense_1 nl (Nonlinearity) (4,) dense_1 60

model _car_sts p=24428(95.42 KBytes) macc=49668 rom=95.42 KBytes ram=3.06 KiB io_ram=616 B

Complexity per-layer - macc=49,668 rom=97,712

id layer (type) macc rom

0 convld (Conv2D) [RRRRRREAN! 15.5% | 0.7%
1 convld 1 (Conv2D) FEEEETEEE TR r et 36.3% | 1.6%
4 dense (Dense) FEEEETEEETEEr e e e et 47.4% FrrEErrerrrerr e e e e rrrrr 96.7%
4 dense_nl (Nonlinearity) | | 0.0%
5 dense_1 (Dense) | 0.5% | 1.1%
5 dense_1 nl (Nonlinearity) | 0.1% | 0.0%

page 20/39

‘,_l UM3053

SPC5-STUDIO-AI API

elapsed time (analyze): 0.65s

Note: If the report does not appear properly filled, check the generated *.h5 file as it could be corrupted or
generated with a Tensorflow framework version different from 2.4.0. In the latter case, uninstall and
reinstall Tensorflow 2.4.0 in the Google Colab, as follows:

- $pip uninstall tensorflow

- $pip install tensorflow==2.4.0

3.2 SPC5-STUDIO-AI API

The SPC5-STUDIO-AI plugin generates the C library files for all the enabled networks within the network list.
Then, users can design and develop specific applications based on these C library APIs.

The generation process output creates the following files (C library files) within the folder /
spc5_ai_components/cfg/:

. sensing_node_network.c
. sensing_node_network.h
. sensing_node_network_data.c
. sensing_node_network_data.h

Moreover, the generation process output includes a report shown in the SPC5-STUDIO console while the
command is in execution. The same report is also stored in a .txt file within the same folder. Even if an error
occurs during the processing of one of the enabled networks, the generation task continues to process the other
enabled networks.

In the generated files you can find:
. AI SENSING NODE NETWORK C #define

— Several C #defines are generated in the .h and _data.h files. Most of these #defines are used to
instruct the compiler preprocessor on how to configure properly the dimension and allocation of the
neural network data structure.

Table 1. List of #defines

AT SENSING NODE NETWORK MODEL NAME A C string with the C name of the model
AI SENSING NODE NETWORK _IN/OUT NUM It indicates the total number of input/output tensors.

A C table (ai_buffer type) to describe the input/output

AT SENSING NODE NETWORK IN/OUT . .
- — — — tensors (see ai__run() function

A C table (integer type) to indicate the number of

AT SENSING NODE NETWORK IN/OUT SIZE . .
- - — _IN/ — items by input/output tensors (= H x W x C)

It indicates the total number of items for the first input/

AT SENSING NODE NETWORK IN/OUT 1 SIZE
- - - - - = output tensor

It indicates the size in bytes for the first input/output

AI SENSING NODE NETWORK IN/OUT 1 SIZE BYTES , .
— — — — - = — tensor (see ai__run() function)

It indicates the minimal size in bytes provided by
AT SENSING NODE NETWORK DATA ACTIVATIONS SIZE | a clientapplication layer as a working buffer (see
ai__init() function)

It indicates the size in bytes of the generated weights/

AT SENSING NODE NETWORK DATA WEIGHTS SIZE .
— — - - — - bias buffer segment

It indicates that the input buffers are usable from the
AI SENSING NODE NETWORK INPUTS IN ACTIVATIONS | activations buffer. It is defined only if the --allocate-
inputs option is used

It indicates that the outputs buffers are usable from
AT SENSING NODE NETWORK OUTPUTS IN ACTIVATIONS | the activations buffer. It is defined only if the'--allocate-
outputs option is used

UM3053 - Rev 1 page 21/39

https://www.st.com/en/product/SPC5-STUDIO-AI?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

m UM3053

SPC5-STUDIO-AI API

. ai sensing node network create

ai_error ai_sensing node_network create(ai_handle* network, const ai_buffer*
network config);
ai handle ai sensing node network destroy(ai handle network);

This is the initial function invoked by the application to create an instance of the neural network. The
ai_handle is updated after the network creation with the pointer to the entire structure. From this moment,
this handle is passed to all the other neural network related functions. The network config parameter is
a specific network configuration buffer (opaque structure) coded as ai_buffer type. The network configuration
is decided before the code generation. Therefore, it cannot be dynamically changed by the application.

When the instance is no more used by the application, the ai sensing node network destroy ()
function should be called to release the possible allocated resources.

. al sensing node network init

ai_bool ai_sensing init(ai_handle network, const ai network params* params);

This mandatory function is used by the application to initialize the internal runtime data structures and to set
the activations buffer and weights buffer.

The params parameter is a structure (ai_network_params type) to pass the references of the generated
weights (params field).

The network handler should be a valid handle (see ai sensing node network create () function).

. ai sensing node network run

ai_i32 ai__ run(ai_handle network, const ai_buffer* input, ai_buffer* output);

This function is called to feed the neural network. The input and output buffer parameters (ai_buffer type)
provide the input tensors and store the predicted output tensors. The returned value is the number of the
input tensors processed.

UM3053 - Rev 1 page 22/39

m UM3053

Al-car sensing node

4 Al-car sensing node

41 Precautions for use

The EMC performance of the AEKD-AICAR1 is detailed below:

. for emission, full compliance with EN IEC 61000-6-3 and EN 55032 standards

. for immunity, partial compliance with EN IEC 61000-6-1 and EN 55035 standards, as the kit is not immune to
the following types of disturbance:
— continuous RF electromagnetic field disturbances at the frequency of 260 MHz (in vertical polarization

3 V/m) and 340 MHz (in horizontal polarization 3 V/m);

— continuous induced RF disturbances at the frequency of 43MHz @ 3V.

If exposed to the above disturbances, the kit might change its operation mode without recovering the previous
working condition.

During immunity tests, the kit achieved level C. This means that the kit was not damaged during the test, but

required the intervention of an operator to reset it. If the kit is exposed to these frequencies and shows changes in
the working condition, turn the kit off and switch it on again.

4.2 Hardware overview

The AEKD-AICAR1 Al-car sensing node consists of:

1. The AEK-MCU-C4MLIT1, designed to address automotive and transportation applications and other
applications requiring automotive safety and security levels. The board exploits the functionality of the
SPC58EC80ES5 32-bit automotive grade ASIL-B microcontroller with 4 MB flash memory, full access to
the two MCU cores, GPIOs and peripherals such as ISO CAN FD (with a transceiver), and UART. The
AEKD-AICAR1 uses the AEK-MCU-C4MLIT1 evaluation board to process discrete acceleration variations
(acquired from the three-axis IMU system) in order to run a pretrained neural network. Moreover, the board
drives the AEK-LCD-DT028V1 LCD display board to show neural network results.

2. The AEK-CON-SENSOR1 with the STEVAL-MKI206V1 evaluation board, which embeds the AIS2DW12
IMU sensor. The AEK-CON-SENSOR1 connector board is designed to interface MEMS sensor boards in a
DIL 24 socket with SPC58 Chorus MCUs. The connector board includes a 1.8 V LDO voltage regulator to
supply the AIS2DW12 inertial measurement sensor. The AIS2DW12 sensor is used to acquire acceleration
values on a three-axis reference system.

3. The AEK-LCD-DT028V1, which hosts a 2.8” LCD display with resistive touch to display the graphical user
interface (GUI) and interact with the SPC58 Chorus family microcontrollers. The TFT LCD display has
a resolution of 240x320 pixels and features the resistive touch managed by an on-board touch screen
controller. Both the display and the touch are controlled via SPI by the MCU. The AEK-LCD-DT028V1
display is used to show results of the LSTM neural network computation.

4. The power supply unit.
To power the AEKD-AICAR1, use the switch to choose one of the following options:
a. the internal battery pack with six AAA batteries;
b. anexternal 12 V DC power supply directly connected to the AEK-MCU-C4MLIT1.

4.3 Software architecture overview

The AEKD-AICAR1 software architecture consists of three layers: low-level software, high-level software, and the
main application.

UM3053 - Rev 1 page 23/39

https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-mcu-c4mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-mcu-c4mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-con-sensor1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/steval-mki206v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/ais2dw12?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-con-sensor1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/ais2dw12?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/ais2dw12?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-mcu-c4mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

UM3053

Software architecture overview

3

Figure 23. AEKD-AICAR1 software architecture

Main Application

Data Buffering Report Generation

High Level Software

IMU Al Sensing Node Network LCD display

Middleware Middleware Middleware

Low Level Software

AEK-CON-SENSOR1 Al_Sensing_Node_Network AEK-LCD-DT028V1
component API API component API

4.3.1 Low-level software

This is the lower layer of the software architecture. It is responsible for interfacing the MCU with the other boards.
This layer includes:

. AEK-CON-SENSOR1 AutoDevKit component APIs
. Al sensing node neural network API
. AEK-LCD-DT028V1 AutoDevKit component API

4.3.1.1 AEK-CON-SENSOR1 AutoDevKit component APIs

The AEK-CON-SENSOR1 MEMS sensor drivers are included in a component that belongs to the AutoDevKit
software (STSW-AUTODEVKIT). The library is written in MISRA C. The target software is generated automatically
according to the code generation and pin allocation paradigm included in the AutoDevKit design flow. The drivers
can be easily adapted to any ST MEMS sensor, even if not directly supported by the software library.

To configure the AEK-CON-SENSOR1 AutoDevKit component for the AEKD-AICAR1 application, follow the
procedure below.

Step 1. Go on [SPC58ECxx Platform Component RLA] in the project explorer and add a new [AEK-CON-
SENSOR1 Component RLA] from the list.

Step 2. Press on the allocation button to make the AutoDevKit automatically allocate all the required MCU pins.

Step 3. Use the PinMap editor to verify that all the relevant pins have been allocated (four for the SPI and two
for the interrupts).

Step 4. Use the [Board Viewer] for information on how to connect the MCU board to the sensor board.
Then, the application uses the following available AEK-CON-SENSOR1 APlIs:
— Toinitialize the MEMS sensor board: void init mems ()

— To configure the AIS2DW12 accelerometer: ais2dwl2 0.methods-
>configure sensor (&ais2dwl2 0, power mode 12bit, continuous, 25Hz, 2g,
low pass 1 and 2 odr div 20);

— To get acceleration values: ais2dwl2 0.methods->get accelerations (&ais2dwl2 0,
&accelerations);

Refer to the AEK-CON-SENSOR1 user manual for further details.

4.3.1.2 Al sensing node neural network API
For detailed information on this API, see Section 3.2 .

UM3053 - Rev 1 page 24/39

https://www.st.com/en/product/aek-con-sensor1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/stsw-autodevkit?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/aek-con-sensor1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/aek-con-sensor1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/ais2dw12?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/resource/en/user_manual/um2833-automotive-mems-interface-for-autodevkit-applications-with-spc5-mcu-discovery-boards-stmicroelectronics.pdf

m UM3053

Software architecture overview

4.3.1.3 AEK-LCD-DT028V1 AutoDevKit component API

All the development drivers related to the LCD display based on the AEK-LCD-DT028V1 board are included in a
component that belongs to the AutoDevKit software (STSW-AUTODEVKIT) version 1.5.0 (or higher). The library
is written in MISRA C. The target software is generated automatically according to the code generation and pin
allocation paradigm included in the AutoDevKit design flow.

To configure the AEK-LCD-DT028V1 AutoDevKit component for the AEKD-AICAR1 application, follow the
procedure below.

Step 1. Go to the [SPC58ECxx Platform Component RLA] in the project explorer and add a new [AEK-LCD-
DT028V1 Component RLA] from the list.

Step 2. Select the font file to embed in your application. (font size = 12 pt).

Step 3. Go to the configuration portion of the component and add an entry on the board list, selecting the SPI
port (DSPI) and the related chip selects (CS) for the display and touch screen.

Step 4. Use the [Board Viewer] to determine how to connect the MCU board to the LCD display board.
The following AEK-LCD-DT028V1 APlIs are used in our system:
— Tonitialize the display: aek 1119341 init (AEK LCD DEVO);
— Toset the orientation: aek 1119341 setOrientation (AEK_LCD DEVO,
ILI9341 ROTATE LANDSCAPE) ;
— Todraw display icons and show results:
aek 1119341 fillRect (AEK _LCD DEV0,102,20,150,160,BLUEL)

aek 1119341 drawImage (AEK LCD DEVO,110, 20, (intlé t)parking.width,
(intl6é_t)parking.height, parking.pixel data, PIXFMT RGB 565);

aek 1119341 drawString(AEK LCD DEVO, 102, 160, "PARKING", color,
font24pt) ;

4.3.2 High-level software
This layer includes:
. IMU middleware
. Al sensing node network middleware
. LCD display middleware

4.3.2.1 IMU middleware
The IMU middleware is responsible for:
. initializing the inertial measurement unit: void init IMU ()

. acquiring and removing the IMU offset values on the three-axis reference system due to the incorrect ECU
positioning and gravity effect on the z -axis: void get offset IMU(void)

. collecting data from IMU and perform data buffering on the buffer_difference_accelerations array of the A
acceleration on the three-axis:

void collect data IMU(void)

buffer difference accelerations[BUFFER ACCELERATIONS SIZE] = {

AAcc_x samplel, AAcc_y samplel, AAcc z samplel, AAcc_x sample2, AAcc y sample2,
AAcc_z_sample2, AAcc_x sample3, AAcc y sample3, AAcc_z sample3,}

where BUFFER_ACCELERATIONS SIZE = S * 1 * D;

S =50 is the number of samples of LSTM network window.

D = 3 is three times the A acceleration on the three-axis.

. returning the buffer_difference_acceleration array for the neural network processing: float*
get diff acceleration buffer IMU(void);

. sending a frame of the raw acceleration array for the neural network training with the serial protocol through
Google Colab: void send frame (void)

Note: To evaluate the accuracy of the LSTM neural network, we have created an IMU_LOG.h file that contains a fixed
buffer_difference_accelerations array. This array has been loaded on the flash memory and contains 3-axis A
acceleration samples with the known car state (parking, normal, bumpy, skid).

UM3053 - Rev 1 page 25/39

https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/stsw-autodevkit?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/autodevkit
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

m UM3053

Software architecture overview

If you want to read from the log file, use the following instructions:

. void get offset LOG (void)

. void collect data LOG (void)

. float* get diff acceleration buffer IMU(void);

4.3.2.2 Al sensing node network middleware
This middleware is responsible for:
. initializing the LSTM neural network: void init ai sensing node CNN(void)
. returning the LSTM neural network to initial data: void deinit ai sensor node CNN (void)
. running the LSTM neural network: void run ai sensor node network(void)

4.3.2.3 LCD display middleware

The LCD display middleware is responsible for the icons and messages to display according to the results of
LSTM neural network. It is responsible also for:

. initializing the LCD display: void infotainment system init (void);

. printing a message (with a specific color) and drawing an icon: void display print (uint8 t msg,
uintl6 t color);

4.3.3 Main application software
The AEKD-AICAR1 application has three operating working modes:
. Acquisition
. Real-time calculation (default)
. Offline calculation

4.3.3.1 Acquisition
This working mode is used to perform an LSTM neural network training.
If #define ACQUISITION is applied on the head of main application:
. the calculation of the LSTM is deactivated
. the serial protocol is initialized to send three axis acceleration samples with a baud rate of 38400 bps

4.3.3.2 Real-time calculation

This working mode is used when the ECU is installed on a car and the LSTM neural network is already
pretrained. To activate this working mode, comment the #define ACQUISITION.

At power-up, press the SW_1 button on the AEK-MCU-C4MLIT1. If the button is well pressed, then the LED_2
switches off.

4.3.3.3 Offline calculation
This is the default operating mode at power-on.
The LSTM neural network is computed on the log file.
To activate this working mode, comment the #define ACQUISITION.
At power-up, press the SW_1 button on the AEK-MCU-C4MLIT1 until the LED_2 switches on.

UM3053 - Rev 1 page 26/39

https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-mcu-c4mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/aek-mcu-c4mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

m UM3053

Test and results

5 Test and results

5.1 Environment setup
The AEKD-AICAR1 sensing node has been installed in a sedan car with a normal shock absorber system.
The x-axis of the AIS2DW12 accelerometer must have the same direction of the car motion.

5.2 Test performed
The AEKD-AICAR1 has been tested in several conditions:
. normal road: a straight or curved road with normal surface conditions
. bumpy road: a straight or curved road with a bumpy road surface
. skidding/swerving: on a normal road and on a bumpy road
. parking
. stopped car: with the engine on and off

5.3 Results

Table 2. Test conditions and results

Test condition Number of tests Number of failures Failure percentage
10 0

Normal road 0%
Bumpy road 10 0 0%
Skid normal road 10 2 (detected as bumpy road) 20%
Skid bumpy road 10 2 (detected as bumpy road) 20%
Parking engine on 10 0 0%
Parking engine off 10 0 0%

Totally, we have performed 60 tests, with four failures. Then, the failure percentage is 6%.

As shown by the above tests, the AEKD-AICAR1 has some issues with the skid state recognition, due to the low
number of test cases used during the training phase.

The system has an accuracy of 94% when the ECU is directly installed on the sedan. Instead, with the offline
simulation, the accuracy from the confusion matrix is 93%.

UM3053 - Rev 1 page 27/39

https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/ais2dw12?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053

Schematic diagrams

m UM3053
6

Schematic diagrams

Note: The AEKD-AICART1 kit consists of the following evaluation boards: AEK-MCU-C4MLIT1, AEK-CON-SENSOR1,
AEK-LCD-DT028V1, and STEVAL-MKI206V1. You can find their detailed schematic diagrams at the related web
pages:

. AEK-MCU-C4MLIT1 schematic diagrams
. AEK-CON-SENSOR1 schematic diagrams
. AEK-LCD-DT028V1 schematic diagrams
. STEVAL-MKI206V1 schematic diagrams

UM3053 - Rev 1 page 28/39

http://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/AEK-MCU-C4MLIT1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/AEK-CON-SENSOR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/STEVAL-MKI206V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/resource/en/schematic_pack/AEK-MCU-C4MLIT1_schematic.pdf
https://www.st.com/resource/en/schematic_pack/AEK-CON-SENSOR1_schematic.pdf
https://www.st.com/resource/en/schematic_pack/aek-lcd-dt028v1_schematic.pdf
https://www.st.com/resource/en/schematic_pack/steval-mki206v1_schematic.pdf

Bill of materials

m UM3053
7

Bill of materials

Note: The AEKD-AICART1 Kit consists of the following evaluation boards: AEK-MCU-C4MLIT1, AEK-CON-SENSOR1,
AEK-LCD-DT028V1, and STEVAL-MKI206V1. You can find their detailed schematic diagrams at the related web

pages:
. AEK-MCU-C4MLIT1 bill of materials
. AEK-CON-SENSOR1 bill of materials
. AEK-LCD-DT028V1 bill of materials
. STEVAL-MKI206V1 bill of materials

UM3053 - Rev 1 page 29/39

http://www.st.com/en/product/AEKD-AICAR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/AEK-MCU-C4MLIT1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/AEK-CON-SENSOR1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/AEK-LCD-DT028V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
http://www.st.com/en/product/STEVAL-MKI206V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3053
https://www.st.com/resource/en/bill_of_materials/aek-mcu-c4mkit1_bom.pdf
https://www.st.com/resource/en/bill_of_materials/AEK-CON-SENSOR1_bom.pdf
https://www.st.com/resource/en/bill_of_materials/aek-lcd-dt028v1_bom.pdf
https://www.st.com/resource/en/bill_of_materials/steval-mki206v1_bom.pdf

m UM3053

Regulatory compliance

Appendix A Regulatory compliance

Notice for US Federal Communication Commission (FCC)

For evaluation only; not FCC approved for resale
FCC NOTICE
FCC NOTICE - This kit is designed to allow:

(1) Product developers to evaluate electronic components, circuitry, or software associated with the kit to
determine whether to incorporate such items in a finished product and

(2) Software developers to write software applications for use with the end product.

This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all
required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product
not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless
the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit
must operate under the authority of an FCC license holder or must secure an experimental authorization under
part 5 of this chapter 3.1.2.

Notice for Innovation, Science and Economic Development Canada (ISED)

For evaluation purposes only. This kit generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to Industry Canada (IC) rules.

A des fins d'évaluation uniquement. Ce kit génére, utilise et peut émettre de I'énergie radiofréquence et n'a pas
été testé pour sa conformité aux limites des appareils informatiques conformément aux régles d'Industrie Canada
(1C).

Notice for the European Union

This device is in conformity with the essential requirements of the Directive 2014/30/EU (EMC) and of the
Directive 2015/863/EU (RoHS).

Notice for the United Kingdom

This device is in compliance with the UK Electromagnetic Compatibility Regulations 2016 (UK S.I. 2016 No. 1091)
and with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
Regulations 2012 (UK S.I. 2012 No. 3032).

UM3053 - Rev 1 page 30/39

m UM3053

Google Colab code for the neural network training

Appendix B Google Colab code for the neural network training

%pip uninstall tensorflow
%pip install tensorflow==2.4.0

from google.colab import files
uploaded = files.upload()

import pandas as pd

import numpy as np

import tensorflow as tf

from sklearn.preprocessing import StandardScaler, MinMaxScaler

from sklearn.model selection import train test split , StratifiedShuffleSplit
import os

import random

from sklearn.metrics import confusion matrix

import seaborn as sn

import matplotlib.pyplot as plt

os.environ['PYTHONHASHSEED']=str (1)
tf.random.set seed(2021)
np.random.seed (2021)

random.seed (2021)

Y LABELS={'P':0,'N':1,'B':2,'S':3}
TIMESERIES LEN = 50

def trip framing(trip,label, frame size,db x,db y):
a = np.array(trip)
for 1 in np.arange(0, a.shape[0O]-frame size, frame size):
x = ali:i+frame size]
db_x.append(x)
db_y.append(Y LABELS[label])

db = pd.read csv('Diff profile.csv',sep="',")
print (db.keys ())
states = db['Status'].value counts ()

scaler = MinMaxScaler ()
ts_status = db.Status

ts diff Ax = (db.Acc x.to numpy () .reshape(-1,1))/9.81
ts diff Ay = (db.Acc_y.to numpy().reshape(-1,1))/9.81
ts diff Az = (db.Acc z.to numpy () .reshape(-1,1))/9.81
ts_time = db['Time']

2

rows
db_ x
db_y

ts_status.shape[0]
[1
[1

for states_id in states.keys():

trip = []
cnt = 0
for i in range (rows):
if ts time[i] == 100:
if len(trip) > O:
trip framing(trip, states id, TIMESERIES LEN, db x, db_y)
trip=[]
if ts_status[i] == states_id and cnt < 7500:
trip.append([ts diff Ax[i],ts diff Ay[i],ts diff Az[i]])
cnt += 1

x _train, x test, y train, y test = train test split(db _x, db_y, test size=0.4,
random state=21,stratify=db y)

x train = np.asarray(x_train)[:,:,:,0]

x test = np.asarray(x_test)[:,:,:,0]

y train = np.asarray(y train)

y _test = np.asarray(y test)

db_stats = pd.Series(y test)

UM3053 - Rev 1 page 31/39

m UM3053

Google Colab code for the neural network training

ConvlD based model
model = tf.keras.models.Sequential ([
tf.keras.layers.ConvlD(filters=16, kernel size=3, activation='relu',
input_ shape=(TIMESERIES LEN, 3)),
tf.keras.layers.ConvlD(filters=8, kernel size=3, activation='relu'),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (64, activation='relu'),
tf.keras.layers.Dense (4, activation='softmax')
1)
model.compile (optimizer='adam', loss='sparse categorical crossentropy', metrics=['accuracy'])
model.fit (x_train, y train, epochs=1000)

model.summary ()

import matplotlib.pyplot as plt
import seaborn as sns
Smatplotlib inline

Y pred = model.predict(x_test)
y_pred = np.argmax (Y pred, axis=1)
confusion matrix = tf.math.confusion matrix(y test, y pred)

plt.figure ()

sns.heatmap (confusion matrix,
annot=True,
xticklabels=Y LABELS,
yticklabels=Y LABELS,
cmap=plt.cm.Blues,
fmt='d', cbar=False)

plt.tight layout ()

plt.ylabel ('True label')

plt.xlabel ('Predicted label')

plt.show ()

model.save ('model car_ sts.h5'")

UM3053 - Rev 1 page 32/39

m UM3053

Python script code for the data acquisition and parsing

Appendix C Python script code for the data acquisition and parsing

import serial as sr

import matplotlib.pyplot as plt
import numpy as np

import time

from csv import writer

def append list as row(list of elem):
Open file in append mode
with open(file name, 'a+') as write obj:
Create a writer object from csv module
csv_writer = writer (write obj, delimiter=',',6 lineterminator='\n")
Add contents of list as last row in the csv file
csv_writer.writerow(list of elem)

def create file with header(list of elem):
Open file in append mode
with open(file name, 'wb') as write obj:
Create a writer object from csv module
csv_writer = writer (write obj)
Add contents of list as last row in the csv file
csv_writer.writerow(list of elem)

s = sr.Serial ('COM31', 38400);
#Write header

named tuple = time.localtime() # get struct time
time string = time.strftime("%m_%d %Y %H %M %S", named tuple)

file name = 'data logger ' + time string + '.csv'
print ('File Created: ' + file name)
row_contents = ['Time','Acc x','Acc y','Acc_z']

create file with header (row_ contents)

while 1:
string line=s.readline () #ascii
string line = string line.strip('\n')
line as list = string line.split(b',"')
time stamp = float(line as 1ist[0])
acc_x = float(line as 1list([1])
acc_y = float(line as 1list([2])
acc_z = float(line as 1list([3])
row_contents = [time stamp,acc_x,acc_y,acc_z]
append list as row(row_contents)

UM3053 - Rev 1 page 33/39

m UM3053

Revision history

Table 3. Document revision history

S R TN

20-Sep-2022 1 Initial release.

UM3053 - Rev 1 page 34/39

m UM3053

Contents

Contents
1 Neural network basic principles. ... i i i 2
1.1 Artificial neural Network 2
1.2 Long short-term memory recurrent neural network (LSTM RNN) 2
2 Designing an Al-car sensing Nodeiiiiiiiiirrnnrrnnrennrennnnnnnnnnns 4
21 Tool-set introdUction e 4
2.2 Creating a Google Colab notebook. 4
23 Colab notebook setup and package importing i 5
24 Al-carsensingnodelife cyCle e 6
241 Model definition. 6
24.2 Model trainingo 7
243 Model fitting and compilation. 11
244 Model evaluation. 12
3 AutoDeVKit eCosystem i i 14
3.1 SPC5-STUDIO-AI PlUgino e e e e e 14
311 How to import SPC5-STUDIO-AI using the standard importing procedure 16
3.1.2 How to import the pretrained LSTM neuralnetwork 17
313 How to analyze the pretrained LSTM neuralnetwork 19
3.2 SPCS-STUDIO-Al APl . . e e e 21
4 Al-carsensing Nodecuuiiiii i 23
4.1 Precautions for USe. 23
4.2 Hardware OVervIeW e 23
4.3 Software architecture overview e 23
4.31 Low-level software 24
4.3.2 High-level software 25
4.3.3 Main application software 26
5 Testand resultsuiiiiiiiiii i i i st 27
5.1 Environment Setup 27
5.2 Test performed. 27
5.3 RESUIRS . . oo 27
6 Schematicdiagrams............oiiiiiiiiii ittt it 28
7 Bill of materials.coiiii i i e s 29
Appendix A Regulatory compliancecoiiiiiiiiiiiii it iataa i aaaaaaaas 30
Appendix B Google Colab code for the neural network training 31
Appendix C Python script code for the data acquisition and parsing 33

UM3053 - Rev 1 page 35/39

m UM3053

Contents

ReVISION NiStOry i i ittt eate i aaa s snanarennnaaennnnns 34
Listof tables ... i i it it ea ittt iaa s i aa e 37
List Of figUIres.o e 38

UM3053 - Rev 1 page 36/39

m UM3053

List of tables

List of tables

Table 1. List Of #defines e 21
Table 2. Test conditions and results e 27
Table 3. Documentrevision history 34

UM3053 - Rev 1 page 37/39

m UM3053

List of figures

List of figures

Figure 1. AEKD-AICAR1T evaluation Kit 1
Figure 2. Artificial neural Nnetwork 2
Figure 3. Recurrent neural Network. 3
Figure 4. Al-car sensing node: car state classification 4
Figure 5. Project file 5
Figure 6. Acceleration variations. 8
Figure 7. Time-based dataset example 9
Figure 8. Adding the status column. 10
Figure 9. Creating CSV files. 10
Figure 10. Complete model generation 12
Figure 11. Confusion matrixX. 13
Figure 12. Installing the plugin 14
Figure 13. Install new software. 15
Figure 14. Creating a new SPC5-STUDIO application. e e e e 16
Figure 15. Selecting the component 16
Figure 16. Adding @a new COmMPONENt. 17
Figure 17. Selecting [SPC5 Al Component RLA]. e 17
Figure 18. Network listimported. 18
Figure 19. Adding a new network 18
Figure 20. Configuring the parameters 18
Figure 21. Selecting [Analyze]. 19
Figure 22. Clicking on [Analyze] 20
Figure 23. AEKD-AICAR1 software architecture. 24

UM3053 - Rev 1 page 38/39

m UM3053

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics — All rights reserved

UM3053 - Rev 1 page 39/39

http://www.st.com/trademarks

	 Introduction
	1 Neural network basic principles
	1.1 Artificial neural network
	1.2 Long short-term memory recurrent neural network (LSTM RNN)

	2 Designing an AI-car sensing node
	2.1 Tool-set introduction
	2.2 Creating a Google Colab notebook
	2.3 Colab notebook setup and package importing
	2.4 AI-car sensing node life cycle
	2.4.1 Model definition
	2.4.2 Model training
	2.4.2.1 Training dataset
	2.4.2.2 Neural network training with Google Colab

	2.4.3 Model fitting and compilation
	2.4.4 Model evaluation

	3 AutoDevKit ecosystem
	3.1 SPC5-STUDIO-AI plugin
	3.1.1 How to import SPC5-STUDIO-AI using the standard importing procedure
	3.1.2 How to import the pretrained LSTM neural network
	3.1.3 How to analyze the pretrained LSTM neural network

	3.2 SPC5-STUDIO-AI API

	4 AI-car sensing node
	4.1 Precautions for use
	4.2 Hardware overview
	4.3 Software architecture overview
	4.3.1 Low-level software
	4.3.1.1 AEK-CON-SENSOR1 AutoDevKit component APIs
	4.3.1.2 AI sensing node neural network API
	4.3.1.3 AEK-LCD-DT028V1 AutoDevKit component API

	4.3.2 High-level software
	4.3.2.1 IMU middleware
	4.3.2.2 AI sensing node network middleware
	4.3.2.3 LCD display middleware

	4.3.3 Main application software
	4.3.3.1 Acquisition
	4.3.3.2 Real-time calculation
	4.3.3.3 Offline calculation

	5 Test and results
	5.1 Environment setup
	5.2 Test performed
	5.3 Results

	6 Schematic diagrams
	7 Bill of materials
	Appendix A Regulatory compliance
	Appendix B Google Colab code for the neural network training
	Appendix C Python script code for the data acquisition and parsing
	 Revision history
	Contents
	List of tables
	List of figures

