Did the ball hit the net? For all the ping pong games with no official referee, we developed a smart sensor that can detect when the ball hits the table or the net using machine learning! This application is easily transferable to other use cases using NanoEdge AI Studio.

Approach

  • Use of an accelerometer to collect the vibration behavior of the net
  • Define a collection of classes (3 classes of data: let, shock table, normal set)
  • Log and import these data in the NEAI Studio tool and generate the corresponding library
  • Test the library on the STEVAL-PROTEUS1 board

Sensor

Accelerometer: ISM330DHCX

Data

3 classes of data Let, table choc, normal play
Length data 64 * 3 axis
Data rate 416 Hz; Range: 2g

Results

2 classes (let & normal play):
100 % accuracy, 0.8 KB RAM, 0.2 KB Flash
3 classes:
95 % accuracy, 0.8 KB RAM, 0.5 KB Flash

result result result

A green point means we are able to correctly predict if the finish will pass a visual inspection or not.
A red point means we were incorrect.

Model created with
NanoEdge AI Studio
NanoEdge AI Studio
Compatible with
STM32
STM32

Resources

Model created with NanoEdge AI Studio

A free AutoML software for adding AI to embedded projects, guiding users step by step to easily find the optimal AI model for their requirements.

NanoEdge AI Studio NanoEdge AI Studio NanoEdge AI Studio

Compatible with STM32

The STM32 family of 32-bit microcontrollers based on the Arm Cortex®-M processor is designed to offer new degrees of freedom to MCU users. It offers products combining very high performance, real-time capabilities, digital signal processing, low-power / low-voltage operation, and connectivity, while maintaining full integration and ease of development.

STM32 STM32 STM32

You might also be interested by

Entertainment | Image recognition | Vision | STM32Cube.AI | Demo | Tutorial | GitHub | Video

Smart mirrors for fitness: pose estimation and multi-person tracking

Track and analyze users' body movements to provide feedback on exercise with STM32N6 at 28 FPS.

Predictive maintenance | Accelerometer | NanoEdge AI Studio | Video | Partner | Industrial

Anomaly detection with on-device learning with Rtone

Anomaly detection solution on industrial equipment, running on STM32 MCU.

Object detection | Vision | STM32Cube.AI | Idea | GitHub | Video | Dataset | Smart building

Personal protective equipment detection

Detection of personal protective equipment on workers using an object detection AI model.