リニアアクチュエータの故障の検出と診断にAIを使用。
このユース・ケースは、 クランフィールド大学によるデータセット「 Detection and Diagnosis of Faults in Linear Actuators(リニア・アクチュエータの故障の検出と診断)」に基づいています。 目標は、リニア・アクチュエータの4つの状態、正常、バックラッシュ、潤滑不足、スポーリングを検出および分類することです。
リニアアクチュエータから収集したデータを使用し、データセットには(SciPyライブラリを使用して).csvファイルに変換可能な複数の.matファイルが含まれています。同じ動作に対応するファイルはすべて連結され、最終的に4つのファイルだけになりました:Normal.csv、Backlash.csv、LackOfLubrication.csv、Spalling.csvです。このデータセットには、他のクラスに比べ多くのスポーリングデータが含まれているため、よりバランスの取れた学習用データセットを確保するため、スポーリングデータの半分のみを使用した。
次に、 NanoEdge AI Studioを使用して、これらの入力に基づいたリニア・アクチュエータの状態の分類が可能なN-クラス分類プロジェクトを作成しました。
Nクラス分類:
90.65%の精度、20.3KバイトのRAM、184Kバイトのフラッシュメモリ
緑の点は正しく分類された信号を表し、赤い点は誤って分類された信号を表します。 横座標はクラス、縦座標は正常状態に対する類似度です。
要件に合った最適なAIモデルを簡単に見つけられるようユーザをステップ・バイ・ステップでガイドし、組込みプロジェクトにAIを追加できる無償のAuto MLソフトウェアです。
Arm® Cortex®-Mベース32bitマイコンのSTM32ファミリは、マイコン・ユーザに高いレベルの自由を提供します。完全統合性および開発の容易さを維持しながら、高性能、リアルタイム性能、豊富な機能、デジタル信号処理、低消費電力 / 低電圧駆動、およびコネクティビティを兼ね備えた製品を提供します。