予知保全は、機械学習を使用して機器が故障する可能性が高い時期を予測する保全戦略です。
ポンプなどの産業機器は、動作中にさまざまな信号が発生します。 それらの機器にセンサを取り付けてデータを収集することで、機械学習を使用して正常挙動パターンと異常挙動パターンを識別することが可能です。 この予防型のアプローチは、ダウンタイムの最小化、効率の向上、機器の寿命延長を目的としています。
このユース・ケースでは、振動データを収集・分析し、機械学習モデルを使用して異常を検出するというアプローチをポンプに実装しました。 このアプローチは、他の多くの産業用機械に容易に適用できます。

アプローチ

プロジェクトの目標:
  • ポンプの振動を使用して、ポンプを装備した油圧回路の異常を検出する。
  • このモデルをまったく異なる回路で使用しても、このエッジAI学習テクノロジーのおかげで異常検出が可能であることを証明する。

このプロジェクトでは、第1回路を使用してポンプの振動データを加速度センサによって記録しました。 栓を閉じて水の流れを切り替えることで、正常信号と異常信号の両方を発生させて収集しました。
その後、NanoEdge AI Studioで異常検出モデルを開発しました。 また、ソフトウェア・ツールを使用して学習データに最適化されたモデルを作成しました。
作成されたモデルは STEVAL-PROTEUS1にロードされ、最初の回路に接続された。 このプロトタイプは、正常データと異常データをリアルタイムに検出できました。
その後、モデルをロードしたProteusボードを第2回路に移動し、オンエッジ学習を用いて同じモデルを新しい回路の信号で数秒間、再学習しました。 モデルは第1回路に最適化されていましたが、第2回路でもうまく機能しました。

センサ

加速度センサ(3軸) ISM330DHCX

データ

規則正しい信号と異常な信号
- 通常信号:第一回路が正常な状態でのポンプ振動の640信号
- 異常信号:両方の偏差の一方がブロックされたポンプ振動の440信号
信号長768(各軸256、3軸)
データレート6667 Hz、レンジ:2g

結果

異常検知クラス:
精度100%、7.8KバイトRAM、6.1Kバイトフラッシュ

uc-neais-results-pump-anomaly_detection-based-on-vibrations uc-neais-results-pump-anomaly_detection-based-on-vibrations uc-neais-results-pump-anomaly_detection-based-on-vibrations

青い点は正常信号、赤い点は異常信号です。
横座標は信号値、縦座標は正常状態に対する類似度です。

モデル作成ツール
NanoEdge AI Studio
NanoEdge AI Studio
対応製品

STM32シリーズ

STM32シリーズ
リソース

モデル作成ツール NanoEdge AI Studio

要件に合った最適なAIモデルを簡単に見つけられるようユーザをステップ・バイ・ステップでガイドし、組込みプロジェクトにAIを追加できる無償のAuto MLソフトウェアです。

NanoEdge AI Studio NanoEdge AI Studio NanoEdge AI Studio

対応製品 STM32シリーズ

Arm® Cortex®-Mベース32bitマイコンのSTM32ファミリは、マイコン・ユーザに高いレベルの自由を提供します。完全統合性および開発の容易さを維持しながら、高性能、リアルタイム性能、豊富な機能、デジタル信号処理、低消費電力 / 低電圧駆動、およびコネクティビティを兼ね備えた製品を提供します。

STM32シリーズ STM32シリーズ STM32シリーズ
You might also be interested by

チュートリアル | デモ | MEMS MLC | 加速度センサ | 産業機器 | 予知保全

STWIN.boxを使用してファンコイル・システムを監視および分類する方法

MEMSセンサ内蔵の機械学習コアを使ってファン(冷暖房空調設備など)の挙動を監視、分類します。

チュートリアル | デモ | MEMS MLC | ジャイロセンサ | 加速度センサ | 予知保全 | ウェアラブル機器

超低消費電力センサを搭載したウェアラブル・デバイスによる頭部のジェスチャ認識

頷いたり、首を横に振ったり、その他の一般的な頭部の動きを、MEMSセンサ内蔵の機械学習コアによって認識します。

予知保全 | 加速度センサ | NanoEdge AI Studio | ビデオ | パートナー | 産業機器

Rtoneによるオンデバイス学習による異常検知

STM32マイクロコントローラ上で動作する産業機器の異常検出ソリューション。